PA Schedule 18 – Technical Requirements: Appendices Execution Version

RFP No. 201-2014 B PA So The City of Winnipeg Southwest Rapid Transitway (Stage 2) and Pembina Highway Underpass

Appendix MM – Bus Rapid Transit Project Southwest Transitway Corridor Geotechnical Investigation – Technical Memorandum

Project No.

PRIVILEGED AND CONFIDENTIAL

16 December 2015

Insert name of Preferred Proponent
Insert name of Preferred Proponent
and the above Preferred Proponent's Lenders and Agent

and

The City of Winnipeg 185 King Street Winnipeg MB R3B 1J1

Re:

The City of Winnipeg Southwest Rapid Transitway (Stage 2) and Pembina Highway Underpass Project (the "Project") – Reliance on BUS RAPID TRANSIT PROJECT SOUTHWEST TRANSITWAY CORRIDOR GEOTECHNICAL INVESTIGATION. Technical Memorandum Report. December 16, 2015

Dear Sirs/Madames:

In consideration of the sum of \$2.00, the receipt and sufficiency of which is hereby acknowledged by Golder Associates Ltd. (the "Consultant"), the Consultant has prepared this letter to allow the use of and reliance on the reports listed in Schedule "A" attached hereto (the "Reports") prepared in connection with the Project, by the Proponent who is ultimately successful under the RFP [NTD: Insert Name of Preferred Proponent when Identified]] (the "Preferred Proponent") [and] [NTD: If required, insert the City if not included in underlying report], [their/its] respective successors and permitted assigns, and the Preferred Proponent's lenders and/or lenders' agent as listed in the Preferred Proponent's submission documents for the RFP (the "Preferred Proponent's Lenders and Agent", as applicable), notwithstanding any limitation on reliance contained in the Reports, as if the Preferred Proponent, the Preferred Proponent's Lenders and Agent [and The City] were the original addressees.

We confirm that we are prepared to answer queries in respect of the Reports. Further, it should be noted that the use of and reliance on the Reports is governed by and limited to the terms and conditions as set out in the Reports and such other terms and conditions in Schedule "B" hereto. In addition, the use of and reliance on the Reports are governed by the following conditions:

- 1. The information in the Reports relates only to the property described in the Reports. The Consultant makes no representation or warranty whatsoever as to the sufficiency of the Consultant's scope of work for the purposes of the Preferred Proponent, including in its capacity as Project Co (as this entity is defined in the Project Agreement for the Project between The City and Project Co).
- 2. The information and conclusions provided in the Reports apply only to the subject property as it existed at the time of the Consultant's site investigations. Should the site use or conditions change, the information and conclusions in the reports may no longer apply.
- 3. The Consultant makes no representations regarding the marketability of the subject property and none should be inferred based on the Reports.
- 4. The Reports are intended to be used in their entirety and no excerpts may be taken to be representative of the findings in the assessments.
- 5. Disclosure or distribution of the Reports to any third party, or any reproduction of such Reports (except as required by your accountants, regulators, and legal advisors, which shall include a copy of this reliance letter) without the prior written consent of the Consultant is prohibited.
- 6. This reliance letter is not assignable and does not confer any right or benefit upon any third party unless written agreement is made between the Consultant and the third party.

Subject to each and every of the foregoing conditions, you may rely on the Reports for the express purpose for which they were prepared, subject always to the qualifications and limitations contained in the Reports [and you have no greater rights than those of The City as contained in the Reports].

We trust that the foregoing is satisfactory. Should you have any further questions, please contact our office.

Yours truly,

Golder Associates Ltd.

If you have any questions, please do not hesitate to contact me at (306) 667-1186.

Yours truly,

Laurent Gareau, M.Sc.

GOLDER ASSOCIATES LTD.

R. G. Maribor S2208

Rod Ramage, M.Eng. P.Eng. Senior Geotechnical Engineer

GOLDER ASSOCIATES LTD.

Certificate of Authorization

Golder Associates Ltd.

No. 2997

Date: Jec 17 2015

Attachments: Report / Memorandum dated December 16, 2015 Reliance Agreement Terms and Conditions

SCHEDULE "A"

REPORTS

BUS RAPID TRANSIT PROJECT SOUTHWEST TRANSITWAY CORRIDOR GEOTECHNICAL INVESTIGATION. Technical Memorandum Report, December 16, 2015

TECHNICAL MEMORANDUM

DATE December 16, 2015

PROJECT No. 1537312

TO David Krahn
Dillon Consulting Ltd.

CC

FROM Crystal Rinas, M.Sc.

EMAIL Crystal Rinas@golder.com

BUS RAPID TRANSIT PROJECT SOUTHWEST TRANSITWAY CORRIDOR GEOTECHNICAL INVESTIGATION

Golder Associates Ltd. (Golder) is pleased to provide this memorandum detailing the geotechnical investigation along the alignment for the Southwest Transit Corridor for the Bus Rapid Transit Phase II project.

A geotechnical investigation was completed by Golder from October 13, 2015 to November 2, 2015. The investigation consisted of drilling thirteen test holes along the alignment of the Bus Rapid Transit expansion. Test hole TH15-03 was cancelled by Dillon Consulting Ltd. (Dillon) prior to the commencement of the field program. The boreholes were located in the field using a hand held GPS unit. Test holes TH15-05 to TH15-09 were moved from their originally planned locations to allow for a safe distance from overhead power lines. Test hole TH15-13 was moved to avoid underground infrastructure. The test hole locations are shown in Appendix A.

Prior to mobilization, requests were filed with Manitoba Click Before you Dig, Manitoba Hydro and DigShaw to locate underground utilities in the area of each test hole. In addition, a private utility locator was engaged to perform a secondary sweep of each location and locate private utilities. Work permits were obtained by Golder from Manitoba Hydro and CN Rail prior to drilling test holes which fell within their respective right-of-ways.

The test holes were advanced using a track mounted Acker SX drill rig supplied and operated by Paddock Drilling Ltd. of Brandon, Manitoba. The test holes were advanced using 150 millimetres (mm) solid stem, 200 mm hollow stem augers or casing advancer through the soil to the target termination depth of the test hole or to bedrock. In selected test holes up to 5 metres (m) of limestone (bedrock) core was retrieved using an HQ core barrel and casing advancer. Soil samples were obtained at approximately 1.5 m intervals using a 50 mm outside diameter split-spoon sampler driven by a drop hammer in accordance with the Standard Penetration Test procedure (ASTM D1586-08a Standard Test Method for Standard Penetration Test). Grab samples were obtained from the auger flights when using solid stem augers. Thin-walled Shelby tube samples were also taken within the cohesive materials at selected intervals (ASTM D1587-08 Standard Penetration for Thin-Walled Tube Sampling).

Samples recovered during the field investigation were returned to Golder's Saskatoon Laboratory for further testing and analysis. Table 1 summarizes the number and type of testing performed on the soil samples as part of this investigation. Shelby tube sample observations, including features such as desiccation, fractures and slickensides, were noted on the Record of Borehole sheets. The inclination of observed fractures and slickensides was measured relative to the axis of borehole penetration. Shelby tube sample photographs are included in Appendix D. A Record of Borehole sheet was completed for each borehole to record the description and relative position of the soil strata, the location of the borehole, and other drilling notes. Records of Borehole sheets are included in Appendix B. The results of all laboratory testing are included in Appendix C.

Table 1: Summary of Instrumentation Installed and Laboratory Testing Performed

Test Hole	TH15-01	TH15-02	TH15-04	TH15-05	TH15-06	TH15-07	TH15-08	TH15-09	TH15-10	TH15-11	TH15-12	TH15-13	TH15-14
Termination Depth	10.2 m	14.3 m	14.4 m	22.9 m	21.3 m	24.4 m	27.4 m	22.9 m	15.4 m	18.3 m	24.4 m	17.5 m	21.3 m
Moisture Content	15	17	15	19	13	24	25	15	21	15	16	22	24
Atterberg Limit	4	4	4	4	4	5	4	4	4	4	4	4	5
Unconfined Compression	4	3	4	4	4	4	4	4	4	2	3	3	4
Shelby Tube	4	3	4	4	4	4	4	4	4	3	4	4	4
Bulk Density (Unit Weight)	4	3	4	5	5	5	4	4	4	3	4	3	4
Standard Consolidation	0	1	0	0	2	0	0	2	0	0	0	0	4
Hydrometer	0	1	0	0	1	0	1	0	1	0	1	0	0
Uniaxial Compression (Rock Core)	0	0	0	1	1	0	0	1	0	1	1	0	1
Soil Chemistry and Sulphates	0	0	0	1	1	0	0	1	0	1	1	0	1
Standpipe	0	0	0	1 (bedrock)	0	0	1 (bedrock)	1 (bedrock)	0	1 (mid till)	0	0	1 (bedrock)
Piezometers	0	3 (mid and lower clay, mid till)	0	0	3 (mid and lower clay, mid till)	1 (mid till)	0	0	1 (mid clay)	0	2 (mid clay, mid till)	0	0

Standpipe piezometers were installed in test holes TH15-05, TH15-08, TH15-09, TH15-11 and TH15-14. The standpipe piezometers were constructed using 25 mm polyvinyl chloride pipes with a slotted section at selected depth intervals within the boreholes. The standpipe piezometer installation details are shown on the Record of Borehole sheets in Appendix B.

Vibrating wire piezometers were installed in selected test holes (Table 2). The vibrating wire piezometers were fully grouted in the boreholes using a Portland cement:water:bentonite (1:2.5:0.3) grout mix. The vibrating wire piezometer installation details are also shown on the Record of Borehole sheets in Appendix B. The vibrating wire calibration sheets are included in Appendix E.

Table 2: Vibrating Wire Piezometer Installation Details

Test hole	Vibrating Wire Piezometer Serial Number	Ground Surface Elevation (m)	Vibrating Wire Piezometer Depth (m)	Vibrating Wire Piezometer Tip Elevation (m)	Strata
TH15-02	VW34545	232.9	6.1	226.8	Mid clay
TH15-02	VW34544	232.9	10.7	222.2	Lower clay
TH15-02	VW34543	232.9	13.7	219.2	Till
TH15-06	VW34546	231.8	6.7	225.1	Mid clay
TH15-06	VW34547	231.8	11.0	220.8	Lower clay
TH15-06	VW34548	231.8	14.6	217.2	Till
TH15-07	VW34550	231.9	14.9	217.0	Till
TH15-10	VW34549	232.8	7.9	224.9	Mid clay
TH15-12	VW34551	232.9	7.9	225.0	Mid clay
TH15-12	VW34552	232.9	16.7	216.2	Till

The findings of this report were based on the results of field and laboratory investigations conducted for the proposed development. Conditions encountered at the surface or at depth during construction of the proposed structures may be different than those indicated in the report.

Closure

We trust that this report is sufficient for your present needs. Please contact the undersigned at your convenience if you have any questions, or if any point requires clarification.

GOLDER ASSOCIATES LTD.

Cuptel Rinas

Crystal Rinas, M.Sc.

Rod Ramage, M.Eng., P.Eng. Senior Geotechnical Engineer

Laurent Gareau, M.Sc. Principal

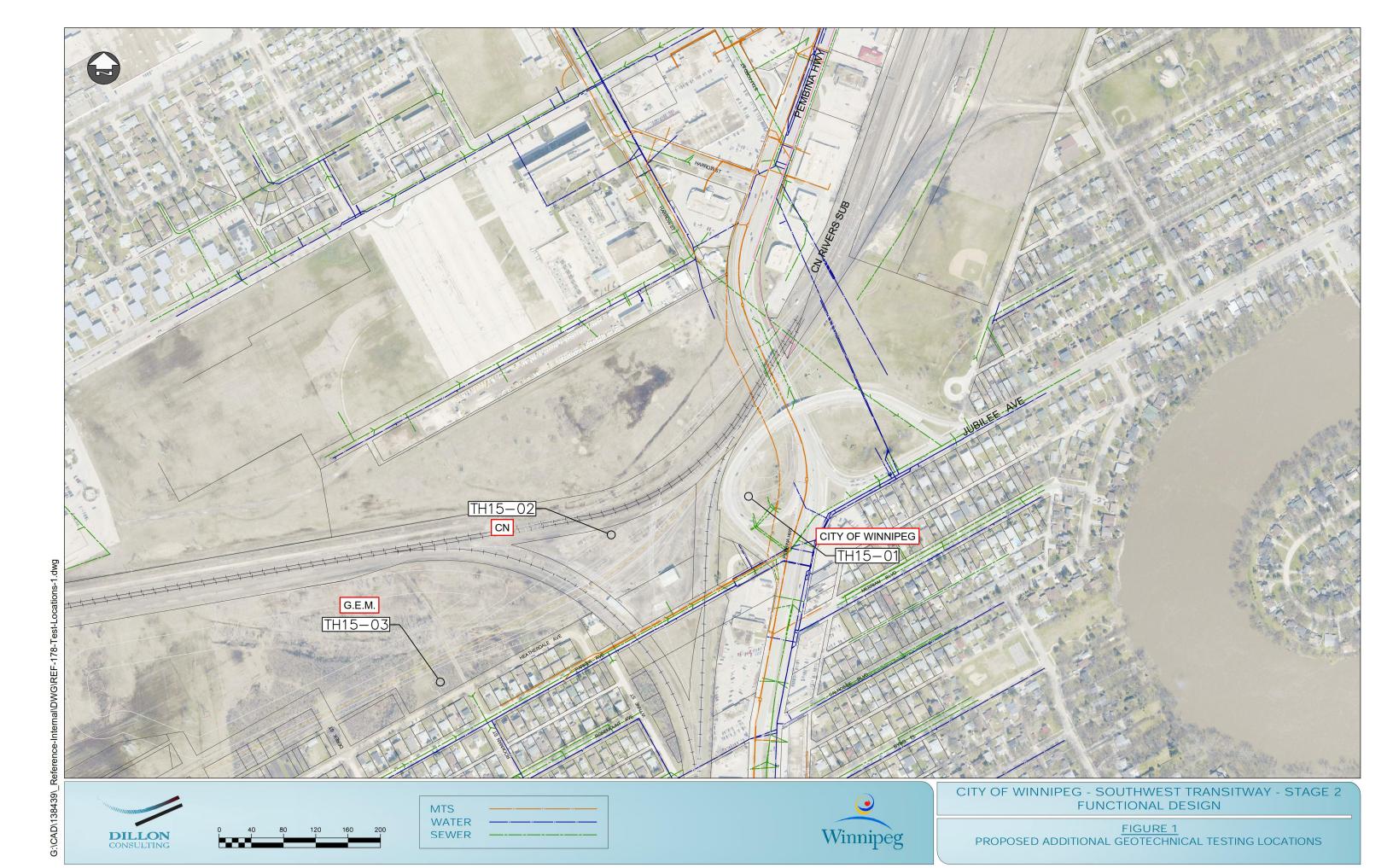
- Papecin

Certificate of Authorization

Golder Associates Ltd.

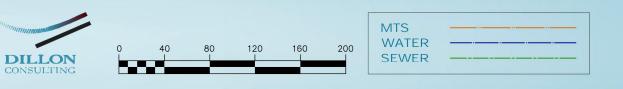
No. 2997

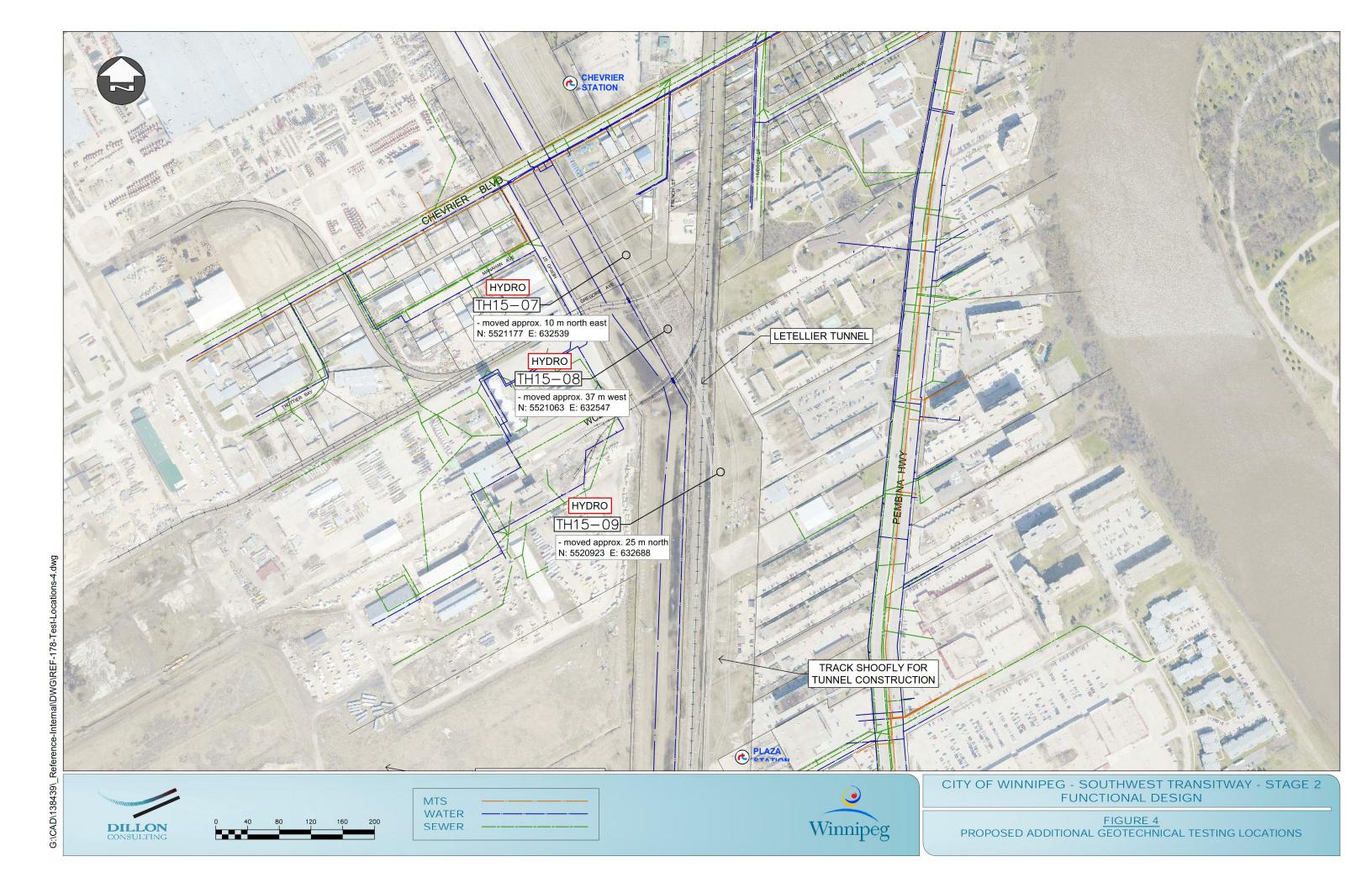
Date: Dec 17, 2015



David Krahn 1537312
Dillon Consulting Ltd. December 16, 2015

APPENDIX A


Test Hole Locations



CITY OF WINNIPEG - SOUTHWEST TRANSITWAY - STAGE 2 FUNCTIONAL DESIGN

FIGURE 3
PROPOSED ADDITIONAL GEOTECHNICAL TESTING LOCATIONS

Winnipeg

MTS WATER

SEWER

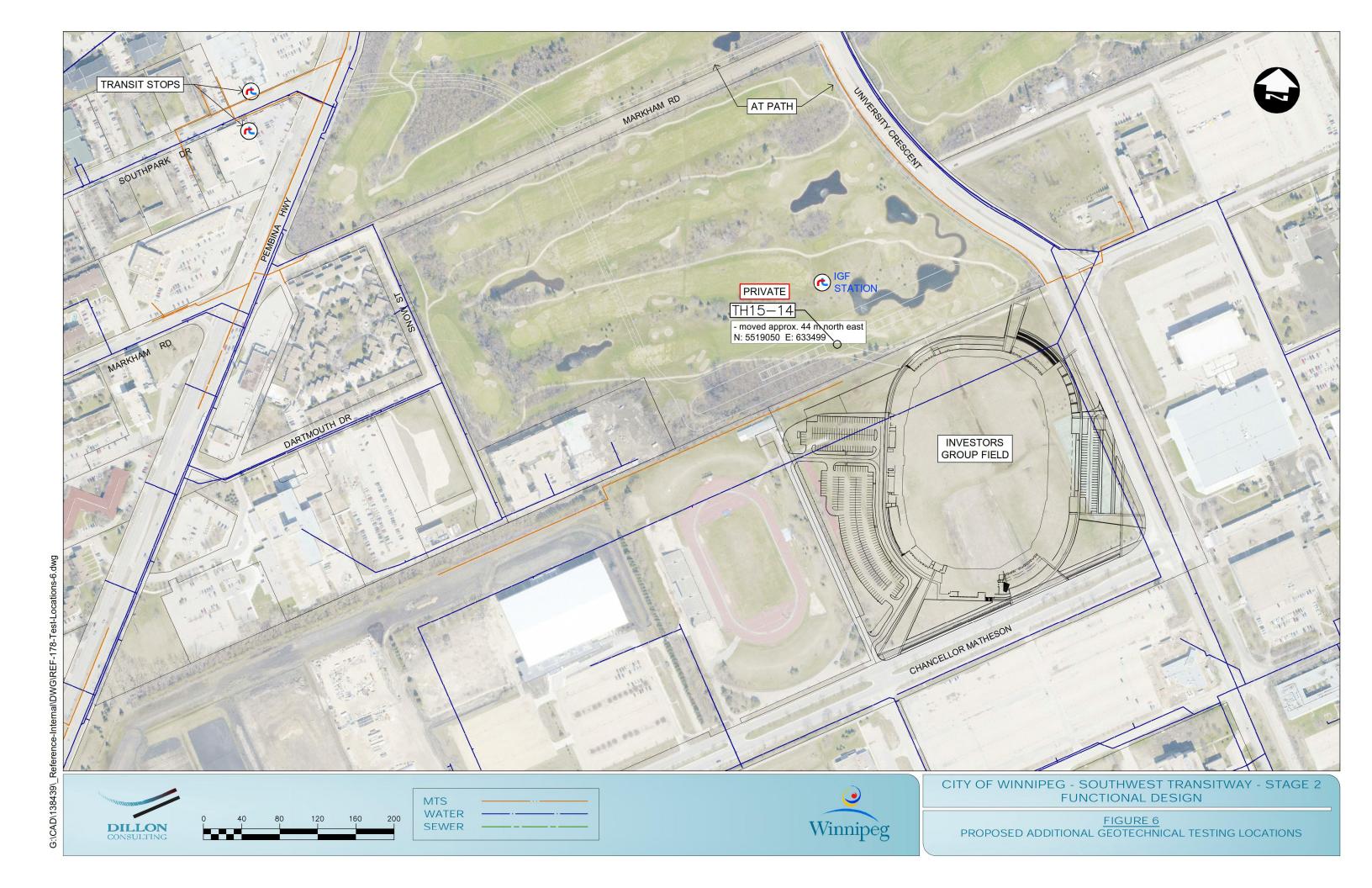

FUNCTIONAL DESIGN

FIGURE 5

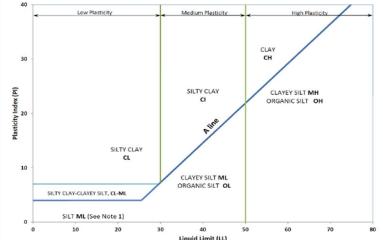
PROPOSED ADDITIONAL GEOTECHNICAL TESTING LOCATIONS

DILLON

David Krahn 1537312
Dillon Consulting Ltd. December 16, 2015

APPENDIX B

Record of Borehole Sheets



METHOD OF SOIL CLASSIFICATION

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D_1)^2}{D_{10}}$	$\frac{(30)^2}{xD_{60}}$	Organic Content	USCS Group Symbol	Group Name					
		of is nm)	Gravels with ≤12%	Poorly Graded		<4		≤1 or ≥	:3		GP	GRAVEL					
(ss)	(Si mm)	/ELS mass action 4.75 n	fines (by mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL					
bу ma	SOILS an 0.07	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	Gravels with >12%	Below A Line			n/a				GM	SILTY GRAVEL					
SANIC t <30%	AINED rger th	(×) cc larg	fines (by mass)	Above A Line			n/a			≤30%	GC	CLAYEY GRAVEL					
NORG	SE-GR/ ss is la	of is mm)	Sands with ≤12%	Poorly Graded		<6		≤1 or ≥	≥3	≤30%	SP	SAND					
INORGANIC (Organic Content ≤30% by mass)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND					
Ö	%05<)	SAN 50% by parse fr	Sands with >12%	Below A Line			n/a				SM	SILTY SAND					
		(k	fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND					
Organic							Field Indica	tors									
or Inorganic	Soil Group	Туре	Type of Soil	Laboratory Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Organic Content	USCS Group Symbol	Primary Name					
			- plot		and LL plot ine	- plot	and LL plot ine sity ow)	SILTS (Non-Plastic or Pl and LL plot below A-Line on Plasticity Chart below)	11	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT
(ss	,5 mm)	and LL	and I	and LI ine sity ow)		and LI Line city low)			and LI ine sity ow)	and L Line city low)	and L Line city low)	Liquid Limit <50	Slow	None to Low	Dull	3mm to 6 mm	None to low
INORGANIC (Organic Content ≤30% by mass)	FINE-GRAINED SOILS (250% by mass is smaller than 0.075 mm)	SILTS	below A-Line on Plasticity Chart below)		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT					
SANIC S30%		Pasti	를 등 등 - 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SIL					
INORGANIC	-GRAIN s is sm	Z.		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT					
ganic C	FINE.	lot	art	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY					
0)	250% b	CLAYS	A-Line city Ch elow)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY					
	3	CLAYS (PI and LL plot above A-Line on Plasticity Chart below)		C. C. above	above Plasti	Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY			
Peat and mineral soil mixtures Predominantly peat, may contain some mineral soil, fibrous or amorphous peat						1	ı	1	30% to 75%		SILTY PEAT SANDY PEA						
								75% to 100%	PT	PEAT							

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT.

Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

Dual Symbol — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML. For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to er indicates a range of similar soil types within a stratum.

January 2013 G-1

ABBREVIATIONS AND TERMS USED ON RECORDS OF **BOREHOLES AND TEST PITS**

PARTICLE SIZES OF CONSTITUENTS

Soil	Particle Size	Millimetres	Inches
Constituent	Description		(US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse	19 to 75	0.75 to 3
	Fine	4.75 to 19	(4) to 0.75
SAND	Coarse	2.00 to 4.75	(10) to (4)
	Medium	0.425 to 2.00	(40) to (10)
	Fine	0.075 to 0.425	(200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier				
>35	Use 'and' to combine major constituents (i.e., SAND and GRAVEL, SAND and CLAY)				
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable				
> 5 to 12	some				
≤ 5	trace				

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (qt), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); N_d:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

PH: Sampler advanced by hydraulic pressure PM: Sampler advanced by manual pressure WH: Sampler advanced by static weight of hammer Sampler advanced by weight of sampler and rod WR:

SAMPLES

AS	Auger sample
BS	Block sample
CS	Chunk sample
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
FS	Foil sample
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open – note size
TP	Thin-walled, piston – note size
WS	Wash sample

SOIL TESTS

SOIL ILSIS	
w	water content
PL, w _p	plastic limit
LL , w _L	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
M	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight

Tests which are anisotropically consolidated prior to shear are shown as CAD, CAU.

NON-COHESIVE (COHESIONLESS) SOILS

Compactness²

Term	SPT 'N' (blows/0.3m) ¹
Very Loose	0 - 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	>50

^{1.} SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects.

2. Definition of compactness descriptions based on SPT 'N' ranges from

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

COHESIVE SOILS

Consistency					
Term	Undrained Shear Strength (kPa)	SPT 'N' ¹ (blows/0.3m)			
Very Soft	<12	0 to 2			
Soft	12 to 25	2 to 4			
Firm	25 to 50	4 to 8			
Stiff	50 to 100	8 to 15			
Very Stiff	100 to 200	15 to 30			
Hard	>200	>30			

SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

Water Content

Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

G-2 January 2013

Terzaghi and Peck (1967) and correspond to typical average N_{60} values.

LIST OF SYMBOLS

Unless otherwise stated, the symbols employed in the report are as follows:

π In x log ₁₀ g t	3.1416 natural logarithm of x x or log x, logarithm of x to base 10 acceleration due to gravity time	(a) W WI OF LL WP OF PL PO OF PI WS PO OF	Index Properties (continued) water content liquid limit plastic limit plasticity index = $(w_l - w_p)$ shrinkage limit liquidity index = $(w - w_p) / I_p$ consistency index = $(w_l - w) / I_p$ void ratio in loosest state void ratio in densest state density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN		(formerly relative density)
γ Δ ε ε _ν η υ σ	shear strain change in, e.g. in stress: $\Delta \sigma$ linear strain volumetric strain coefficient of viscosity Poisson's ratio total stress effective stress ($\sigma' = \sigma - u$)	(b) h q v i k	hydraulic Properties hydraulic head or potential rate of flow velocity of flow hydraulic gradient hydraulic conductivity (coefficient of permeability) seepage force per unit volume
σ'_{vo}	initial effective overburden stress principal stress (major, intermediate, minor)	(c)	Consolidation (one-dimensional)
σ _{oct} τ u E G	mean stress or octahedral stress = $(\sigma_1 + \sigma_2 + \sigma_3)/3$ shear stress porewater pressure modulus of deformation	C _c C _r C _s C _α	compression index (normally consolidated range) recompression index (over-consolidated range) swelling index secondary compression index
K	shear modulus of deformation bulk modulus of compressibility	$egin{array}{c} m_{ m v} & & & & & & \\ c_{ m v} & & & & & & & \\ c_{ m h} & & & & & & & \\ T_{ m v} & & & & & & & \end{array}$	coefficient of volume change coefficient of consolidation (vertical direction) coefficient of consolidation (horizontal direction) time factor (vertical direction)
III.	SOIL PROPERTIES	U σ′ _p	degree of consolidation pre-consolidation stress
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	OCR	over-consolidation ratio = σ'_p / σ'_{vo}
ρ _d (γ _d) ρ _w (γ _w) ρ _s (γ _s) γ' D _R e n	dry density (dry unit weight) dry density (unit weight) of water density (unit weight) of solid particles unit weight of submerged soil	$ \begin{array}{c} \textbf{(d)} \\ \tau_{p}, \ \tau_{r} \\ \varphi' \\ \delta \\ \mu \\ c' \\ c_{u}, \ s_{u} \\ p \\ p' \\ q \\ q_{u} \\ S_{t} \end{array} $	Shear Strength peak and residual shear strength effective angle of internal friction angle of interface friction coefficient of friction = $\tan \delta$ effective cohesion undrained shear strength (ϕ = 0 analysis) mean total stress ($\sigma_1 + \sigma_3$)/2 mean effective stress ($\sigma_1 + \sigma_3$)/2 ($\sigma_1 - \sigma_3$)/2 or ($\sigma_1' - \sigma_3'$)/2 compressive strength ($\sigma_1 - \sigma_3$) sensitivity
where	ity symbol is ρ . Unit weight symbol is γ are $\gamma = \rho g$ (i.e. mass density multiplied by eration due to gravity)	Notes: 1 2	τ = c' + σ' tan ϕ' shear strength = (compressive strength)/2

January 2013 G-3

LITHOLOGICAL AND GEOTECHNICAL ROCK DESCRIPTION TERMINOLOGY

WEATHERINGS STATE

Fresh: no visible sign of weathering

Faintly weathered: weathering limited to the surface of major discontinuities.

Slightly weathered: penetrative weathering developed on open discontinuity surfaces but only slight weathering of rock material.

Moderately weathered: weathering extends throughout the rock mass but the rock material is not friable.

Highly weathered: weathering extends throughout rock mass and the rock material is partly friable.

Completely weathered: rock is wholly decomposed and in a friable condition but the rock and structure are preserved.

BEDDING THICKNESS

<u>Description</u>	Bedding Plane Spacing
Very thickly bedded	Greater than 2 m
Thickly bedded	0.6 m to 2 m
Medium bedded	0.2 m to 0.6 m
Thinly bedded	60 mm to 0.2 m
Very thinly bedded	20 mm to 60 mm
Laminated	6 mm to 20 mm
Thinly laminated	Less than 6 mm

JOINT OR FOLIATION SPACING

<u>Description</u>	Spacing
Very wide	Greater than 3 m
Wide	1 m to 3 m
Moderately close	0.3 m to 1 m
Close	50 mm to 300 mm
Very close	Less than 50 mm

GRAIN SIZE

<u>Term</u>	<u>Size*</u>
Very Coarse Grained	Greater than 60 mm
Coarse Grained	2 mm to 60 mm
Medium Grained	60 microns to 2 mm
Fine Grained	2 microns to 60 microns
Very Fine Grained	Less than 2 microns

Note: * Grains greater than 60 microns diameter are visible to the naked eye.

CORE CONDITION

Total Core Recovery (TCR)

The percentage of solid drill core recovered regardless of quality or length, measured relative to the length of the total core run.

Solid Core Recovery (SCR)

The percentage of solid drill core, regardless of length, recovered at full diameter, measured relative to the length of the total core run.

Rock Quality Designation (RQD)

The percentage of solid drill core, greater than 100 mm length, recovered at full diameter, measured relative to the length of the total core run. RQD varied from 0% for completely broken core to 100% for core in solid sticks.

DISCONTINUITY DATA

Fracture Index

A count of the number of discontinuities (physical separations) in the rock core, including both naturally occurring fractures and mechanically induced breaks caused by drilling.

Dip with Respect to Core Axis

The angle of the discontinuity relative to the axis (length) of the core. In a vertical borehole a discontinuity with a 90° angle is horizontal.

Description and Notes

An abbreviation description of the discontinuities, whether naturally occurring separations such as fractures, bedding planes and foliation planes or mechanically induced features caused by drilling such as ground or shattered core and mechanically separated bedding or foliation surfaces. Additional information concerning the nature of fracture surfaces and infillings are also noted.

Abbreviations

JN	Joint	PL	Planar
FLT	Fault	CU	Curved
SH	Shear	UN	Undulating
VN	Vein	IR	Irregular
FR	Fracture	K	Slickensided
SY	Stylolite	PO	Polished
BD	Bedding	SM	Smooth
FO	Foliation	SR	Slightly Rough
CO	Contact	RO	Rough
AXJ	Axial Joint	VR	Very Rough
KV	Karstic Void		
MB	Mechanical Break		

RECORD OF BOREHOLE: TH15-01

SHEET 1 OF 2

N 5523883.9 E 632775.9 BORING DATE: 10/17/15 LOCATION: DATUM: NAD83 DRILL RIG: Acker SX (track) DRILLING CONTRACTOR: Paddock Drilling Ltd. HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SAMPLES SOIL PROFILE PIEZOMETER OR BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STANDPIPE STRATA PLOT INSTALLATION AND GROUNDWATER ELEV. TYPE BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW **OBSERVATIONS** H WI Wp F (m) **GROUND SURFACE** 232.92 232.79 FILL - (CI) SILTY CLAY, trace organics, trace sand; grey; cohesive, firm to stiff 001-01 AS SS 0 001-02 231.09 (CH) CLAY, trace fine sand; brown; 2 cohesive, w>PL, firm 001-03 AS 0 51.7 001-04 TO - 90° slickenside joint observed in 001-04 53.3 SS 001-06 AS - oxidation stains at 4.7m 51.5 0 001-07 TO - 90° slickenside joint observed in 001-07 001-08 SS 6 084 001-09 AS 226.82 (CH) CLAY, high plasticity, trace fine sand; grey; cohesive, w>PL, firm to soft SS 001-10 7 001-11 0 AS 1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15 001-12 то Ю 0 001-13 SS 0 50.5 001-14 AS 9 50.6 001-15 TO 0 001-16 SS 2 51. 10 CONTINUED NEXT PAGE

DEPTH SCALE 1:50 Golder LOGGED: JB SSOCiates CHECKED: CR

LOCATION: N 5523883.9 E 632775.9

RECORD OF BOREHOLE: TH15-01

BORING DATE: 10/17/15 DRILL RIG: Acker SX (track)

DRILLING CONTRACTOR: Paddock Drilling Ltd.

SHEET 2 OF 2 DATUM: NAD83 PIEZOMETER OR

щ	dob	SOIL PROFILE			SAM	1PLE	S		MIC PEI			Paddock		AULIC C k, cm/s	ONDUCT	IVITY,	Т	٥٦	PIEZOMETER OF
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT	ELEV.	2	111	BLOWS/0.3m		20	40	60	80 '	1	0 ⁻⁶ 1	0 ⁻⁵ 10	0 ⁻⁴ 1	0 ⁻³ _	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION AND
ME	RING	DESCRIPTION	ATA	DEPTH	NUMBER	TYPE)/SMC	SHEA Cu, kF	R STRE a	NGTH	nat V. + rem V. €	Q - • U - O		ATER C				ADDIT AB. T	GROUNDWATER OBSERVATIONS
ב	BO		STR	(m)	Z		BLC	2	20	40	60	80			0 3		10		OBSERVATIONS
10	Ļ	CONTINUED FROM PREVIOUS PAGE	7777				_	L			-		ļ				<u> </u>		
		END OF BOREHOLE = 10.21m		222.71 10.21	001-16	SS	2			+	+								
		Notes:		10.21															
		Upon completion of drilling, the borehole was backfilled with cuttings and sealed with bentonite to the ground																	
		sealed with bentonite to the ground surface.																	
11		surface.																	
12																			
13																			
14																			
15																			
13																			
16																			
17																			
18																			
19																			
20																			
	D=:	2045	•					Â			•	•		•			•	206	20050 12
		SCALE						(7		Gold	er ates								OGGED: JB
1:	อบ								AS	SUCI	ales							CH	ECKED: CR

N 5523835.2 E 632609.7

LOCATION:

1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15

1:50

RECORD OF BOREHOLE: TH15-02

BORING DATE: 10/15/15

SHEET 1 OF 2

DATUM: NAD83

CHECKED: CR

DRILL RIG: Acker SX (track) DRILLING CONTRACTOR: Paddock Drilling Ltd. HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SAMPLES SOIL PROFILE PIEZOMETER OR BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STANDPIPE INSTALLATION STRATA PLOI AND GROUNDWATER ELEV. TYPE BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW **OBSERVATIONS** Wp F H WI **GROUND SURFACE** 232.87 FILL - gravel and wood chips 002-01 AS (CL) SILTY CLAY, trace fine to medium sand; grey to dark grey; cohesive, w>PL, 002-02 AS 0 SS 0 002-03 0 2 002-04 AS 230.73 (CH) CLAY, high plasticity, trace fine sand; brown, oxidation stains; cohesive, w>PL, soft 002-05 0 AS 50.6 то 0 002-06 53.7 002-07 AS 50.8 Solid 002-08 SS 50.6 002-09 AS VW34545 51.4 002-10 ТО 0 002-11 AS (CH) CLAY, high plasticity, trace fine sand; grey; cohesive, w>PL, soft to firm 002-12 SS 0, 002-13 AS - trace gravel at 9.1m 002-14 SS 5 0 CONTINUED NEXT PAGE **DEPTH SCALE** LOGGED: JB Golder

N 5523835.2 E 632609.7

LOCATION:

RECORD OF BOREHOLE: TH15-02

BORING DATE: 10/15/15

DRILL RIG: Acker SX (track) DRILLING CONTRACTOR: Paddock Drilling Ltd. HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SAMPLES SOIL PROFILE PIEZOMETER OR BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STANDPIPE INSTALLATION STRATA PLOI NUMBER AND GROUNDWATER ELEV. BLOWS/0. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW **OBSERVATIONS** Wp F H WI (m) CONTINUED FROM PREVIOUS PAGE 10 (CH) CLAY, high plasticity, trace fine sand; grey; cohesive, w>PL, soft to firm (continued) VW34544 51.2 002-15 TO 11 0 + 12 - very soft at 12.2m 002-16 SS 2 13 (ML) sandy CLAYEY SILT, some gravel, fine to coarse sand; light grey/white, (TILL); cohesive, w>PL, very stiff VW34543 002-17 SS 17 0 14 END OF BOREHOLE = 14.33m 14.33 002-18 SS 18 Notes: 1. Refusal at 14.3m 15 16 17 1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15 18 19 20

DEPTH SCALE

1:50

Golder
Associate

LOGGED: JB CHECKED: CR

SHEET 2 OF 2

DATUM: NAD83

RECORD OF BOREHOLE: TH15-04

BORING DATE: 10/24/15

LOCATION: N 5523420.1 E 631861.4 DATUM: NAD83 DRILL RIG: Acker SX (track) DRILLING CONTRACTOR: Paddock Drilling Ltd. HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SAMPLES SOIL PROFILE PIEZOMETER OR BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STANDPIPE INSTALLATION STRATA PLOI AND GROUNDWATER ELEV. BLOWS/0. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW **OBSERVATIONS** Wp H H WI GROUND SURFACE 231.98 TOPSOIL 0.00 231.77 (CI) SILTY CLAY, some sand; dark grey; cohesive, w~PL, stiff 0.21 (MH) CLAYEY SILT, some fine sand to 004-01 AS sandy; light brown; cohesive, w>PL, soft 230.76 (CH) CLAY, high plasticity; mottled 004-02 AS brown and grey; cohesive, w>PL, firm SS 0 004-03 2 004-04 AS то 004-05 - 65° slickenside joint observed in 004-05 Solid Stem 004-06 SS 5 004-07 AS grey below 6.1m 56.5 004-08 ТО 0 - 40° slickenside joint observed in 7 004-09 AS 1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15 52.4 004-10 SS 004-11 TO 0 10 CONTINUED NEXT PAGE LOGGED: JB Golder

DEPTH SCALE 1:50

CHECKED: CR

SHEET 1 OF 2

LOCATION: N 5523420.1 E 631861.4

RECORD OF BOREHOLE: TH15-04

BORING DATE: 10/24/15

SHEET 2 OF 2 DATUM: NAD83

4	P	SOIL PROFILE		SAN	IPLES	3	DYNAMIC PENETRA RESISTANCE, BLOV	VS/0.3m	HYDRAULIC CONI	DUCTIVITY,	פַּר	PIEZOMETER OF STANDPIPE
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT (m) H1dad // range	NUMBER	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGTH	60 80 nat V. + Q - ●	10 ⁻⁶ 10 ⁻⁵ WATER CON	10 ⁻⁴ 10 ⁻³ TENT PERCENT	ADDITIONAL LAB. TESTING	INSTALLATION AND GROUNDWATER
	BORI		(m) HLdad	Ď	۴	BLOW	Cu, kPa 20 40	rem V. ⊕ U - O	Wp I 10 20	0W WI 30 40	PAP	OBSERVATIONS
10		CONTINUED FROM PREVIOUS PAGE (CH) CLAY, high plasticity; mottled brown and grey; cohesive, w>PL, firm (continued)		004-12	ss	2				59	.4.	
12	Hollow Stem Auger			004-13	то		+0			63	.1 O	
14		(CL-ML) SILTY CLAY to CLAYEY SILT, some fine to coarse sand, some gravel; light grey to brown, (TILL); non-cohesive, wet, dense	218.57 13.41	004-14					a—1			
15		END OF BOREHOLE = 14.40m Notes: 1. Refusal at 14.4m. 2. Upon completion of drilling, the borehole was backfilled with cuttings and bentonite to the ground surface.	14.40	004-15a 004-15b	SS							
16												
17												
18												
20												

LOCATION: N 5522211.9 E 631936.6

RECORD OF BOREHOLE: TH15-05

BORING DATE: 10/22/15

DRILL RIG: Acker SX (track) DRILLING CONTRACTOR: Paddock Drilling Ltd. SHEET 1 OF 3

DATUM: NAD83

ALE 3	ГНОВ	SOIL PROFILE	 		SAM	IPLE T			C PENET ANCE, BL			,		k, cm/s		TIVITY,		AL NG	PIEZOMETER O STANDPIPE
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	20 SHEAR S Cu, kPa	40 STRENG	TH r	nat V. +	Q - • U - O			ONTEN.	T PERCE		ADDITIONAL LAB. TESTING	INSTALLATION AND GROUNDWATE OBSERVATION
į	BOF		STR	(m)	Ž		BLC	20	40	6	80	30	Wp				WI 40	4.7	OBSERVATION
0		GROUND SURFACE (CI) SILTY CLAY, trace sand, trace to		232.71															TOC=232.6m
1		conjugate content and content			005-01	AS										0			
		(ML) sandy SILT, fine sand, some clay; brown; cohesive, w>PL, soft		231.18 1.52	005-02	AS									0				
2		(CH) CLAY, high plasticity, trace fine sand; brown; cohesive, w>PL, firm		230.57 2.13															
3		- 15cm silt layer at 2.7m			005-03	AS										0	8	32	
		- 90° and 0° slickenside joints observed in 005-04			005-04	то			C)		103	-					•	
4					005-05	AS											0		
5	Solid Stem Auger				005-06	ss	7										0		Bentonite Chips
6					005-07	AS											51.	\$	
		- 60° slickenside joint observed in 005-08			005-08	то			0			+			<u> </u>		09	34	
7					005-09	AS												0	
8		- becoming grey at 8.2m			005-10	SS	8										0		
9		Southing gray at 0.2111			005-11	AS											08		
		(CH) CLAY, high plasticity; trace sand, grey; cohesive, w>PL, soft - 65° slickenside joints observed in 005-12		9.14	005-12	то				0	+						50.	-1 0	
10		CONTINUED NEXT PAGE	7///	1			-				† 						† -		

RECORD OF BOREHOLE: TH15-05

SHEET 2 OF 3 LOCATION: BORING DATE: 10/22/15 N 5522211.9 E 631936.6 DATUM: NAD83 DRILL RIG: Acker SX (track) DRILLING CONTRACTOR: Paddock Drilling Ltd. DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES PIEZOMETER OR BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STANDPIPE STRATA PLOT INSTALLATION NUMBER AND GROUNDWATER ELEV. TYPE BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW **OBSERVATIONS** Wp F CONTINUED FROM PREVIOUS PAGE 10 (CH) CLAY, high plasticity; trace sand, grey; cohesive, w>PL, soft (continued) - cobbles/boulders inferred from auger AS 0 005-13 resistance at 10.1m 56.5 Solid Stem Auge 005-14 SS 57.6 AS 005-15 12 51.9 12.50 ТО 005-16 (CL/ML) SILTY CLAY to CLAYEY SILT, some fine to coarse sand, some fine to coarse gravel; very light grey, (TILL); cohesive, soft to stiff 13 005-17 SS 0 14 Bentonite Chips 15 SS 14 TILL and LIMESTONE, interlayers with limestone boulders/cobbles 005-19 RC 17 005-20 SS 1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15 005-21 RC 214.69 18 LIMESTONE; white, bedded with slight dolomitic alteration along bedding planes R=100% RQD=15% RC 005-22 19 Bentonite Pellets 005-23 RC R=100% RQD=20% Sand 005-24 RC Screen 20 CONTINUED NEXT PAGE

DEPTH SCALE 1:50

LOGGED: JB Golder CHECKED: CR

LOCATION: N 5522211.9 E 631936.6

RECORD OF BOREHOLE: TH15-05

BORING DATE: 10/22/15 DRILL RIG: Acker SX (track)

DRILLING CONTRACTOR: Paddock Drilling Ltd.

SHEET 3 OF 3

DATUM: NAD83

								DRILLING CONTR	ACTOR:	Paddock	Drilling Ltd.					
	do	SOIL PROFILE			SAM	1PLE	S	DYNAMIC PENETRA RESISTANCE, BLOV	TION /S/0.3m	7	HYDRAULIC k, cm	CONDUCTI	VITY,	Т	ı O	PIEZOMETER OR
METRES	BORING METHOD		LOT		2		3m	20 40	60	80		10 ⁻⁵ 10	⁻⁴ 10	₂₋₃	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
METE	NGN	DESCRIPTION	TA PL	ELEV.	NUMBER	TYPE	VS/0.	SHEAR STRENGTH Cu, kPa		+ Q - •	WATER	CONTENT		NT	OTTO	AND GROUNDWATER
j -	30RI		STRATA PLOT	DEPTH (m)	N	Ļ	BLOWS/0.3m				Wp I	O W			A B	OBSERVATIONS
+			S					20 40	60	80	10	20 30) 4	0		
20		CONTINUED FROM PREVIOUS PAGE LIMESTONE; white, bedded with slight					_	+	+	-	 	+				<u>_</u>
		dolomitic alteration along bedding planes (continued)	岸													
		R=100% RQD=27%														
			茊		005-24	RC										
21																
	Б		莊													
	Drill Casing		岸			1										Screen
Ī																
			异													
22		R & RQD not measured	H		005-25	RC										
			莊													Screen
			异													
			异													
23		END OF BOREHOLE = 22.86m		22.86												
24																
25																
26																
27																
20																
28																
29																
30																
\perp																
DEP	PTH S	SCALE						Gold	l						L	OGGED: JB
								LAME CTOIC	er							

N 5522164.6 E 631962.4

LOCATION:

RECORD OF BOREHOLE: TH15-06

BORING DATE: 10/23/15 DRILL RIG: Acker SX (track)

DRILLING CONTRACTOR: Paddock Drilling Ltd. HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SAMPLES SOIL PROFILE PIEZOMETER OR BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STANDPIPE INSTALLATION STRATA PLOI AND GROUNDWATER ELEV. TYPE BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW **OBSERVATIONS** H WI Wp F GROUND SURFACE 231.83 TOPSOIL 231.68 sandy SILT, fine to medium grained; 0.15 brown; cohesive, w~PL, firm 231.22 (CI) SILTY CLAY, trace fine sand; 006-01 AS brown; cohesive, w~PL, stiff SS 006-02 (MH) CLAYEY SILT, some fine sand; 2 mottled light brown and light grey; 229.70 cohesive, w>PL, soft 51.1 (CH) CLAY, high plasticity; brown, oxidation stains; cohesive, w>PL, soft to 006-03 AS 58.4 то 0 006-04 - 85° slickenside joint observed in 006-04 57.5 006-05 AS 006-06 SS 5 50.2 006-07 AS 56.5 006-08 ТО VW34546 53.4 006-09 AS 1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15 (CH) CLAY; grey, oxidation stains; cohesive, w>PL, soft 53. SS 006-10 006-11 AS 9 006-12 TO 0 0 10 CONTINUED NEXT PAGE **DEPTH SCALE** LOGGED: JB Golder

1:50

CHECKED: CR

SHEET 1 OF 3

DATUM: NAD83

RECORD OF BOREHOLE: TH15-06

BORING DATE: 10/23/15 LOCATION: N 5522164.6 E 631962.4 DATUM: NAD83 DRILL RIG: Acker SX (track) DRILLING CONTRACTOR: Paddock Drilling Ltd. DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES PIEZOMETER OR BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STANDPIPE INSTALLATION STRATA PLOI NUMBER AND GROUNDWATER ELEV. TYPE BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW **OBSERVATIONS** H WI Wn F (m) CONTINUED FROM PREVIOUS PAGE 10 (CH) CLAY; grey, oxidation stains; cohesive, w>PL, soft (continued) AS 006-13 60.4 006-14 SS 11 VW34547 AS 006-15 12 70.9 219.34 12.50 ТО 006-16 0 (CH) SILTY CLAY and SAND; mottled light grey/grey; cohesive, w>PL, soft (CH) CLAY; grey; cohesive, w>PL, soft 006-17 13 218.73 (ML) sandy CLAYEY SILT, fine to coarse sand, trace to some gravel; very light grey, (TILL); cohesive, w<PL, firm to stiff 006-18 AS 006-19 SS 14 VW34548 15 006-20 TO 006-21 SS 16 006-22 RC 006-23 SS 17 LIMESTONE; white, bedded with slight dolomite alteration along bedding planes 1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15 006-24 RC R=100% RQD=30% 18 R=100% RQD=60% 19 006-25 RC 006-26 RC 20 CONTINUED NEXT PAGE

Golder

Associates

DEPTH SCALE 1:50 LOGGED: JB CHECKED: CR

SHEET 2 OF 3

SK_SOIL 1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15

LOCATION: N 5522164.6 E 631962.4

RECORD OF BOREHOLE: TH15-06

BORING DATE: 10/23/15
DRILL RIG: Acker SX (track)

SHEET 3 OF 3 DATUM: NAD83

											X (track) CTOR:) Paddock	Drilling	Ltd.					
ш	00	SOIL PROFILE			SAM	IPLE	S	DYNA! RESIS	MIC PEN	IETRATI BLOWS	ON 5/0.3m	1	HYDRA	AULIC Co	ONDUC	TIVITY,	Т	. (1)	PIEZOMETER OR
DEPTH SCALE METRES	BORING METHOD		TO.		~		3m					80	10			10-4	10 ⁻³	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
OTH S	NGN	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m		RSTRE			Q - • U - O	w	ATER C		T PERCE	NT	3. TE	AND GROUNDWATER
DEF	30RI		TRA	DEPTH (m)	Š	1	3LOV							- H				LAB LAB	OBSERVATIONS
-			S				_	2	0 4	40	60 8	80	1	0 2	<u>:</u> 0	30	40		
- 20	\vdash \vdash	CONTINUED FROM PREVIOUS PAGE LIMESTONE; white, bedded with slight	T			-	-				+						+	-	
F		dolomite alteration along bedding planes (continued)																	* 2 4 -
E		R=100% RQD=51%	H																
ŀ			臣		006-26	RC													
- - 21			莊																
Ē			井	210.50															
ŀ		END OF BOREHOLE = 21.34m		21.34															15.78.78
ŀ																			=
- - 22																			
<u> </u>																			=
F																			-
E																			=
-																			=
- 23 -																			=
ŧ																			3
Ē																			3
-																			=
— 24 -																			-
E																			3
-																			
Ė																			3
_ 25																			=
ļ.																			=
Ė																			3
ŀ																			-
- - 26																			-
E																			3
-																			=
Ē																			3
- - 27																			
ŧ																			=
E																			=
ŧ																			= = = = = = = = = = = = = = = = = = = =
- - 28																			
- 20																			-
Ē																			ā
E																			3
F																			=
- 29 -																			
ŧ																			=
Ė																			- -
Ē																			=
- 30																			=
									—										
DE	PTH S	SCALE						(olde	r							LC	GGED: JB
1:	50							V	As	olde socia	ites							CHE	ECKED: CR

N 5521177.1 E 632538.9

LOCATION:

1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15

1:50

RECORD OF BOREHOLE: TH15-07

BORING DATE: 10/27/15

DRILL RIG: Acker SX (track)
DRILLING CONTRACTOR: Paddock Drilling Ltd.

SHEET 1 OF 3

DATUM: NAD83

CHECKED: CR

HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SOIL PROFILE SAMPLES PIEZOMETER OR BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STANDPIPE INSTALLATION STRATA PLOI AND GROUNDWATER ELEV. TYPE BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW **OBSERVATIONS** H WI Wp F **GROUND SURFACE** 231.91 TOPSOIL 0.08 FILL - (CI) SILTY CLAY, some gravel, some sand, some organics; mottled black and grey, w~PL, firm 0 007-01 AS dark grey to black at 0.6m FILL - (CI-CH) SILTY CLAY, trace fine to 0.76 007-02 AS coarse sand, organics nodules/pockets; mottled light and dark grey; cohesive, w~PL, firm SS 007-03 2 007-04 AS (CH) CLAY, trace fine sand; light brown, 007-05 oxidation stains, light grey nodules; cohesive, w>PL, soft to firm (CH) CLAY; brown; cohesive, w>PL, firm 007-06 AS 0 54.3 007-07 TO - 85° slickenside joint observed in 007-07 53.6 007-08 AS 007-09 SS 5 5 50.2 007-10 AS grey at 6.1m 007-11 ТО 0 0 007-12 0 AS SS 007-14 AS 0 9 53.3 007-15 TO 10 CONTINUED NEXT PAGE **DEPTH SCALE** LOGGED: JB Golder

LOCATION:

N 5521177.1 E 632538.9

RECORD OF BOREHOLE: TH15-07

BORING DATE: 10/27/15

SHEET 2 OF 3

DATUM: NAD83

DRILL RIG: Acker SX (track) DRILLING CONTRACTOR: Paddock Drilling Ltd. DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES PIEZOMETER OR BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STANDPIPE 80 INSTALLATION STRATA PLOI NUMBER AND GROUNDWATER ELEV. TYPE BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW **OBSERVATIONS** H WI Wp F (m) CONTINUED FROM PREVIOUS PAGE 10 (CH) CLAY; brown; cohesive, w>PL, firm (continued) AS 007-16 - soft at 10.4m 53.2 007-17 SS 3 11 55.2 007-18 AS 12 ТО 007-19 0 0 very light grey interlayers at 12.5m 13 007-20 0 AS (CL) SILTY CLAY, some fine to coarse sand, trace gravel; very light grey, (TILL); non-cohesive, moist, compact to 007-21 SS 12 14 very dense 007-22 AS 15 VW34550 - very dense below 15.2m 007-23 SS 16 007-24 SS 0 17 18 213.81 LIMESTONE, white, bedded with slight dolomite alteration along bedding planes R=96% RQD=66% 007-25 RC 19 007-26 RC 20 CONTINUED NEXT PAGE **DEPTH SCALE** LOGGED: JB

DEPTH SCALE
1:50

1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15

Golder Associates

CHECKED: CR

LOCATION: N 5521177.1 E 632538.9

RECORD OF BOREHOLE: TH15-07

BORING DATE: 10/27/15 DRILL RIG: Acker SX (track)

DRILLING CONTRACTOR: Paddock Drilling Ltd.

SHEET 3 OF 3

DATUM: NAD83

								DRILLING CONTR	ACTOR	: Paddoc							
E.	dob	SOIL PROFILE			SAN	IPLE	S	DYNAMIC PENETRA RESISTANCE, BLOV	TION VS/0.3m)	HYDRA	ULIC Co k, cm/s	ONDUCT	IVITY,	Т	G	PIEZOMETER OR
DEPTH SCALE METRES	BORING METHOD		LOT		iK.		.3m	20 40	60	80	10				о ⁻³ Т	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
MET	ING	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH Cu, kPa	nat V.	+ Q- ● ⊕ U- C	WA		ONTENT			DDIT B. TE	AND GROUNDWATER
DE	BOR		STRA	(m)	ž		BLO	20 40	60	80	Wp		0 3		WI 40	₹\$	OBSERVATIONS
- 20		CONTINUED FROM PREVIOUS PAGE LIMESTONE, white, bedded with slight	<u></u>						\perp						$I_{}$		
-		LIMESTONE, white, bedded with slight dolomite alteration along bedding planes (continued)	H														9
		(continued) R=100% RQD=37%	岸														P 5
		1007011QB 0170	岸		007-26	RC											P 5
- 21			H														A .
21			Ħ														7 4
			岸														2 5
																	» s
- 00		D 4000/ DOD 400/	异														4.2
- 22		R=100% RQD=43%	H		007-27	RC											A .
			렆														7.5
			H														P 5
- 23																	A 5
23			茊														7 5
		D 4000/ DOD 000/	莊														7
		R=100% RQD=80%	臣		007-28	RC											, S
- 24			臣														7 5
			异														A 4
		END OF BOREHOLE = 24.38m	Н	207.53 24.38													
- 25																	
- 26																	
- 27																	
- 28																	
- 29																	
- 30																	
DE	PTH S	SCALE						Gold	ler							LC	OGGED: JB
1:	50							Gold	iates							CHI	ECKED: CR

RECORD OF BOREHOLE: TH15-08

BORING DATE: 10/31/15 LOCATION: N 5521063.8 E 632547.9 DATUM: NAD83 DRILL RIG: Acker SX (track) DRILLING CONTRACTOR: Paddock Drilling Ltd. DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES PIEZOMETER OR BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STANDPIPE STRATA PLOT 80 INSTALLATION NUMBER AND GROUNDWATER ELEV. TYPE BLOWS/0. SHEAR STRENGTH Cu, kPa nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION nat V. DEPTH OW **OBSERVATIONS** H WI Wn F (m) GROUND SURFACE TOC=233.1m 232.29 232.14 0.15 FILL - (CI) SILTY CLAY, some sand; dark grey to grey, oxidation; cohesive, w~PL, firm 008-01 AS SS 008-02 2 008-03 AS (ML) CLAYEY SILT, trace sand; brown; 008-04 cohesive, w>PL, soft (CH) CLAY; brown to grey; cohesive, 008-05 w>PL, very soft to firm AS 008-06 TO - 90° slickenside joint observed in 008-06 008-07 AS 008-08 SS 2 Bentonite Chips and Cuttings 5 54.9 008-09 AS 54.7 106 008-10 TO 008-11 AS SS 008-12 008-13 AS 0 9 008-14 То 10 CONTINUED NEXT PAGE

Golder

Associates

DEPTH SCALE
1:50

1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15

SK

LOGGED: JB CHECKED: CR

SHEET 1 OF 3

RECORD OF BOREHOLE: TH15-08

SHEET 2 OF 3 DATUM: NAD83

LOCATION: N 5521063.8 E 632547.9

BORING DATE: 10/31/15 DRILL RIG: Acker SX (track)

DRILLING CONTRACTOR: Paddock Drilling Ltd.

CONTINUED FROM PREVIOUS PAGE CH) CLAY; brown to grey; cohesive, PPL, very soft to firm (continued) very light grey, TILL interlayers at 3.4m ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL); on-plastic, w <pl, hard<="" stiff="" th="" to="" very=""><th>STRATA PLOT</th><th>ELEV. DEPTH (m) 217.5- 14.78</th><th>008-15 008-16 008-17 008-18 008-20 008-21</th><th>3 SS SS TO AS AS SS SS</th><th>2</th><th>SHCu</th><th>20 HEAR I, kPa 20</th><th>STRE</th><th>0 O</th><th>60 nat \ rem 60</th><th>80 V. + (80 80</th><th>Q - • U - O</th><th>w</th><th>/ATER (</th><th>ONTENT</th><th>T PERC</th><th>1 WI 40 E</th><th> </th><th>LAB. TESTIN</th><th>STANDPIF INSTALLATI AND GROUNDWA OBSERVATIO</th><th>ION TER</th></pl,>	STRATA PLOT	ELEV. DEPTH (m) 217.5- 14.78	008-15 008-16 008-17 008-18 008-20 008-21	3 SS SS TO AS AS SS SS	2	SHCu	20 HEAR I, kPa 20	STRE	0 O	60 nat \ rem 60	80 V. + (80 80	Q - • U - O	w	/ATER (ONTENT	T PERC	1 WI 40 E		LAB. TESTIN	STANDPIF INSTALLATI AND GROUNDWA OBSERVATIO	ION TER
CONTINUED FROM PREVIOUS PAGE CH) CLAY; brown to grey; cohesive, polyclastic part of the firm (continued) very light grey, TILL interlayers at 3.4m WL) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);	STRA1	(m)	008-16 008-16 008-17 008-17 008-18 008-20	5 AS SS TO AS SS	2	Cu			40	60				•			£ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	555.5		OBSERVATION	ONS
CH) CLAY; brown to grey; cohesive, PPL, very soft to firm (continued) very light grey, TILL interlayers at 3.4m ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);			008-16 008-17 008-18 008-20 008-21	3 SS SS TO AS AS SS SS											F		£ 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	555.9			
very light grey, TILL interlayers at 3.4m WL) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);			008-16 008-17 008-18 008-20 008-21	3 SS SS TO AS AS SS SS					0	+					F		E E E	555.9			
ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);			008-15 008-15 008-20 008-21	77 AS TO AS					0	+					F		6	62.2			
ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);			008-15 008-15 008-20 008-21	77 AS TO AS					0	+					F		6	62.2			
ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);			008-18 008-19 008-20 008-21	AS SS					0	+							6	62.2 0 53.2			
ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);	<u> </u>		008-18 008-19 008-20 008-21	AS SS					0	+							6	62.2 0 53.2			
ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);	<u> </u>		008-18 008-19 008-20 008-21	AS SS					0	+							6	62.2 0 53.2			
ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);	<u> </u>		008-19 008-20 008-21	AS O SS					0	+								53.2			
ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);			008-19 008-20 008-21	AS O SS					0	+								53.2			
ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);	0.0		008-20	ss ss	5																
ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);			008-20	ss ss	5																
ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);	-0-0		008-20	ss ss	5																
ML) SILT, some fine to coarse sand, ome gravel, limestone obbles/boulders; very light grey, (TILL);	0 0		008-21	-	5													57			
obbles/boulders; very light grey, (TILL);	0.0		008-21	-	5													Ψ			X
obbles/boulders; very light grey, (TILL);	0.0		1 8	1 AS									ı	1							
obbles/boulders; very light grey, (TILL);	0		8						1								5	57.2			
obbles/boulders; very light grey, (TILL);		•				l															
on-plastic, w <rl, flard<="" still="" td="" to="" very=""><td>IΨΠ</td><td>1</td><td>008-22</td><td>2 AS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ben</td><td>ntonite Chips d Cuttings</td><td></td></rl,>	IΨΠ	1	008-22	2 AS															Ben	ntonite Chips d Cuttings	
			008-23	ss										0							
cobble/boulder inferred from auger esistance at 15.5m																					
	φ .																				
	φ																				
	φ. (000.04																		
cobble/boulder inferred from auger	ϕ		006-24	1 55																	
esistance at 17.1m	þ.																				
	ϕ		008-25	RC RC																	
		4	008-26	ss									c								
SP) SAND and GRAVEL, fine to coarse	φ]] .0:.0:.0	18.59	9																		
ompact	000		000.07	7 00																	
	000	9	008-27	RC																	
	000																				
	000 2002	1	008-28	ss	28	<u> </u> -	_		<u> </u>				0_		ļ		1-		_		
CONTINUED NEXT PAGE																		\bot			
Skan	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact 008-29 008-29 008-29 008-29 008-29 008-29 008-29 008-29 008-29 008-29 008-29 008-29 008-29	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact 008-25 RC 008-26 SS 213.70 008-27 RC 008-27 RC	pobble/boulder inferred from auger sistance at 17.1m 008-25 RC 008-26 SS P) SAND and GRAVEL, fine to coarse and, very light grey; non-cohesive, wet, mpact 008-27 RC 008-28 SS 28	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact Ook	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact O08-25 RC O08-25 RC O08-25 RC O08-26 SS O08-27 RC O08-27 RC O08-28 SS 28	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact OB-25 RC OB-26 SS	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact Output Double/boulder inferred from auger 008-25 RC 008-26 SS 213.70 18.59 008-27 RC 008-27 RC 008-28 SS 28	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact OB-25 RC OB-26 SS	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact Output Discrete from auger Output Output	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact O08-25 RC O08-25 RC O08-26 SS O08-26 SS O08-27 RC O08-27 RC O08-28 SS 28	P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact O08-25 RC O08-25 RC O08-25 RC O08-26 SS O08-27 RC O08-28 SS O08-28 SS O08-28 SS O08-28 SS O08-28 SS O08-28 O08-28	obble/boulder inferred from auger sistance at 17.1m One 25 RC One 26 RC One 26 RC One 26 RC One 27 RC One 27 RC One 28 RC One 27 RC One 28 RC One 28 RC One 29 RC One 29 RC One 29 RC One 29 RC One 20 RC On	obble/boulder inferred from auger sistance at 17.1m 008-25 RC 008-25 RC 008-26 SS P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact 008-27 RC 008-28 SS 28	obble/boulder inferred from auger sistance at 17.1m 008-25 RC 008-25 RC 008-26 SS P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact 008-27 RC 008-28 SS 28	obble/boulder inferred from auger sistance at 17.1m 00 008-25 RC 008-26 SS 213.70 008-26 SS 008-27 RC 008-27 RC 008-28 SS 28 0	obble/boulder inferred from auger sistance at 17.1m On Ons.25 RC Ons.26 SS P) SAND and GRAVEL, fine to coarse nd; very light grey; non-cohesive, wet, mpact Ons.27 RC Ons.28 SS Ons.27 RC Ons.28 SS Ons.27 RC Ons.28 SS Ons.2	obble/boulder inferred from auger sistance at 17.1m Output O	obble/boulder inferred from auger sistance at 17.1m O O O O O O O O O O O O O

LOCATION: N 5521063.8 E 632547.9

RECORD OF BOREHOLE: TH15-08

BORING DATE: 10/31/15 DRILL RIG: Acker SX (track)

DRILLING CONTRACTOR: Paddock Drilling Ltd.

SHEET 3 OF 3

ц	НОР	SOIL PROFILE		,	SAM	IPLE	S	DYNAMIC PENETRA RESISTANCE, BLOV	ATION \ WS/0.3m		HYDRAULIC CONDUCTIVITY, k, cm/s	T _º	PIEZOMETER OR STANDPIPE
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGTH	60 80 nat V. + C	g - ● ,	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 WATER CONTENT PERCEI	—— ≌ ŭ	INSTALLATION AND GROUNDWATER
-	BORI		STRA.	DEPTH (m)	N	-	BLOV	Cu, kPa 20 40	rem V. ⊕ U	, 0	Wp		OBSERVATIONS
20		CONTINUED FROM PREVIOUS PAGE											
		(SP) SAND and GRAVEL, fine to coarse sand; very light grey; non-cohesive, wet,	000										Bentonite Chips and Cuttings
		compact (continued)	000	Í									
			000	211.00	008-29	RC							
		(SP) silty SAND, fine to coarse, some gravel; very light grey, (TILL);	P A V	20.73									Bentonite Chips
21		non-cohesive, wet, dense	A A A										and Cuttings
			D 4										
			4 4	9	008-30	SS	46				0		
			A 4										
22			A A	9									
			8 A		008-31	RC							
		LIMESTONE, white, bedded with slight	4. ½ A. A.	209.73									
		dolomite alteration along bedding planes	出	1									
23													Bentonite Pellets
		R=98% RQD=51%	H		008-32	RC							
			F			-							
24													
			臣										Sand
			H										
25		R=100% RQD=73%	豆										
		77.700,77.122.70,70			008-33	RC							
			\Box	-									
26			臣										Screen
			臣										
		D 050/ DOD 000/	臣										
		R=95% RQD=89%	臣		008-34	RC							
27			豆										
			异										
ł		END OF BOREHOLE = 27.43m		204.86 27.43									14-
28													
29													
30													
DE	PTH S	SCALE						Gold	ler				LOGGED: JB
1:5	50							Assoc	iates			C	HECKED: CR

N 5520924.0 E 632649.2

LOCATION:

1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15

SK

1:50

RECORD OF BOREHOLE: TH15-09

BORING DATE: 10/28/15

DRILL RIG: Acker SX (track) DRILLING CONTRACTOR: Paddock Drilling Ltd. DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES PIEZOMETER OR BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STANDPIPE 80 INSTALLATION STRATA PLOI AND GROUNDWATER ELEV. BLOWS/0. TYPE SHEAR STRENGTH WATER CONTENT PERCENT DESCRIPTION nat V. nat V. + Q - ● rem V. ⊕ U - O DEPTH Cu. kPa OW **OBSERVATIONS** -I WI Wn F GROUND SURFACE TOC=233.8m 232.84 TOPSOIL 232.68 FILL - (CI) SILTY CLAY, trace gravel, some medium to coarse sand, organic pockets; mottled brown and grey, oxidation stains; cohesive, w~PL, firm to stiff 009-01 AS 231.62 FILL - (CI) SILTY CLAY, trace sand, 009-02 AS some organics; dark grey; cohesive, w>PL, stiff 231.3 FILL - (CI) SILTY CLAY, trace gravel, trace sand, trace organic fibres; mottled SS 5 009-03 brown grey; cohesive, w>PL, firm 2 009-04 AS 009-05 TO (CH) CLAY; grey to brown; cohesive, w>PL, very soft to soft 53.6 009-06 AS 009-07 SS Bentonite Chips and Cuttings 5 56.8 009-08 AS 56.6 009-09 TO 0 63.6 009-10 AS 52.2 SS 009-12 AS 9 009-13 TO 0 10 CONTINUED NEXT PAGE **DEPTH SCALE** LOGGED: JB

Golder

SHEET 1 OF 3

RECORD OF BOREHOLE: TH15-09

SHEET 2 OF 3 DATUM: NAD83

LOCATION: N 5520924.0 E 632649.2 BORING DATE: 10/28/15

DRILL RIG: Acker SX (track)

DRILLING CONTRACTOR: Paddock Drilling Ltd.

ш	OO.	SOIL PROFILE			SAM	IPLE	S	DYNAMIC PENETF RESISTANCE, BLC	RATION DWS/0.3m	}	HYDRA	ULIC C k, cm/s	ONDUC	TIVITY,	Т		PIEZOMETER OR
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGT Cu, kPa	60 80			⁻⁶ 1	0 ⁻⁵ 1 L ONTENT	PERCE		ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION AND GROUNDWATER
<u>ದ</u>	BOR		STR/	(m)	ž		BLO	20 40	60 80		Wp 10		OW 20 3		WI 40	45	OBSERVATIONS
- 10		CONTINUED FROM PREVIOUS PAGE (CH) CLAY; grey to brown; cohesive, w>PL, very soft to soft (continued) - grey at 10.1m			009-14	AS	_										
- 11					009-15	SS	3						-		9		Bentonite Chips and Cuttings
12					009-16	AS											
13					009-17	то		0	+					0			
		uga light ago Till inte			009-18	AS											
14		- very light grey TILL interlayers at 13.7m			009-19	SS	2								0		Bentonite Chips and Cuttings
15		(ML) SILT, some fine to coarse sand, some fine to medium gravel, cobbles; very light grey, (TILL); cohesive, w <pl, compact="" dense<="" td="" to="" very=""><td>b</td><td>218.05 14.78</td><td>009-20</td><td>AS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	b	218.05 14.78	009-20	AS											
10			φ φ ξ		009-21	SS	12					H)					
16			δ . δ . δ .														
17			φ φ φ		009-23	RC											
18		LIMESTONE, white, bedded with slight dolomite alteration along bedding planes		214.40 18.44	009-24	ss					0						
19					009-25	RC											Bentonite Pellets
20	L	CONTINUED NEXT PAGE			009-26	RC			_						ļ		Sand Screen
	D.T. :				<u> </u>											210	
DE 1:		CONTINUED NEXT PAGE SCALE						Gol	der ciates								OGGED: JB

LOCATION: N 5520924.0 E 632649.2

RECORD OF BOREHOLE: TH15-09

BORING DATE: 10/28/15 DRILL RIG: Acker SX (track) SHEET 3 OF 3

								DRILLING CONTR		Paddock	Drilling Ltd.			
щ	QQ	SOIL PROFILE			SAM	IPLE	s	DYNAMIC PENETRA RESISTANCE, BLOV	TION VS/0.3m	1	HYDRAULIC C k, cm/s	CONDUCTIVITY, s	T	PIEZOMETER OR
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT		ıκ	100	.3m	20 40		0 ``		10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
MET	NG	DESCRIPTION	TAP	DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH Cu, kPa	nat V. + rem V. ⊕	Q - • U - O		CONTENT PERCENT	DDIT B. TE	AND GROUNDWATER
	BOR		STRA	(m)	N	-	BLO\	20 40	60 8		Wp ├		Z Z	OBSERVATIONS
		CONTINUED FROM PREVIOUS PAGE	0,					20 40	00 8	0	10 .	20 30 40		
- 20		LIMESTONE, white, bedded with slight dolomite alteration along bedding planes	H			İΤ	_	 	- +			† <u>†</u> -		
		(continued)	臣											Screen
		R=100% RQD=14%	莊											
			臣		009-26	RC								
- 21			豆											
			井											
														Screen
		- coring resistance at 21.6m												
- 22			井											類
22		R=94% RQD=46%			009-27	RC								
			莊											
		END OF BOREHOLE = 22.86m	F	209.98 22.86										
23		END OF BOKEHOLE = 22.80M		22.00										
24														
25														
26														
20														
27														
28														
29														
_														
30														
		l	1	ı										1
		SCALE						Gold	ler					OGGED: JB
1:	50							Assoc	iates				CH	HECKED: CR

RECORD OF BOREHOLE: TH15-10

SHEET 1 OF 2 DATUM: NAD83

LOCATION: N 5520191.4 E 632628.9 BORING DATE: 10/26/15

DRILL RIG: Acker SX (track)

DRILLING CONTRACTOR: Paddock Drilling Ltd.

	QQ	SOIL PROFILE			SAM	1PLE	S	DYNAMIC RESISTA	PENE		ON /0.3m	1	HYDRA	ULIC CC k, cm/s	NDUC	TIVITY,	T	ي.	PIEZOMETER OR STANDPIPE
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	20 SHEAR S Cu, kPa	TREN		1	Q - • U - O		TER CO	ONTENT	PERCE	IO ⁻³ I	ADDITIONAL LAB. TESTING	INSTALLATION AND GROUNDWATER OBSERVATIONS
\perp	BC		STF	(m)		Ш	B	20	4	0 (80 0	80 T	10				40		
0	_	GROUND SURFACE TOPSOIL	255	232.78		Н													[₂]
1		FILL - (CI) SILTY CLAY, trace fine to coarse sand, trace gravel, trace to some organics, organic pockets; brown to grey; cohesive, w~PL, stiff		232.60 0.18	010-01	AS										0			
2		- 10cm light brown silt layer at 1.5m		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	010-02	SS	10								(Φ			
					010-03	AS										0			
3		- 90° slickenside joint observed in 010-04		228.97	010-04	то			Q		+						51.	5 O	
4		(CH) CLAY, high plasticity; brown; cohesive, w>PL, soft to firm		3.81	010-05	AS									—		54. 9		
5					010-06		7										50.	0	
6					010-08					C							53.	7	
7					010-09										-		8		
8					010-10	SS	3											0	VW34549
9		- grey below 8.8m			010-11	AS											5	51	8 A
10					010-12	то				0	+						56.	7	Bentonite Chips
10	_	CONTINUED NEXT PAGE				Γ			_										

LOCATION: N 5520191.4 E 632628.9

RECORD OF BOREHOLE: TH15-10

BORING DATE: 10/26/15 DRILL RIG: Acker SX (track) SHEET 2 OF 2

щ	OD	SOIL PROFILE			SAM	IPLE	S	DYNA! RESIS	MIC PEN TANCE,	IETRAT BLOWS	ION S/0.3m	1	HYDRA	AULIC C	ONDUCTIVIT	Υ,]	ارق	PIEZOMETER OF
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAF Cu, kP	0 4 R STREI	40 L NGTH	60 nat V. + rem V. €	80 - Q - • • U - O	W	0 ⁻⁶ 1 ATER C	0 ⁻⁵ 10 ⁻⁴ ONTENT PEF	⊣ wı	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION AND GROUNDWATER OBSERVATIONS
- 10 -		CONTINUED FROM PREVIOUS PAGE (CH) CLAY, high plasticity; brown; cohesive, w>PL, soft to firm (continued)	8		010-13	AS		2		40	60	80	1	0 2	20 30	40	0 0 84	
11					010-14	ss	3									57	 O	
12					010-15	AS										53		
13					010-16				0	+							57 O	Bentonite Chips
14		(ML) SILT, some fine to coarse sand,	b	218.76 14.02	010-17 010-18a 010-18b	ss	2											
15		some fine to medium gravel; very light grey, (TILL); non-cohesive, moist, loose to dense - dense at 14.6m	0 0 0		010-19								C) н				
16		END OF BOREHOLE = 15.39m		217.39 15.39	010-20	SS								0				
17																		
18																		
19																		
20																		

LOCATION:

N 5520108.0 E 632587.4

RECORD OF BOREHOLE: TH15-11

BORING DATE: 10/25/15 DRILL RIG: Acker SX (track)

DRILLING CONTRACTOR: Paddock Drilling Ltd.

SHEET 1 OF 2 DATUM: NAD83 PIEZOMETER OR STANDPIPE INSTALLATION AND GROUNDWATER **OBSERVATIONS** TOC=226.7m Bentonite Chips and Cuttings Bentonite Pellets Sand

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STRATA PLOT 80 ELEV. TYPE SHEAR STRENGTH Cu, kPa BLOWS/0 nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION nat V. DEPTH OW H WI Wn F (m) GROUND SURFACE 226.92 TOPSOIL 0.00 226.70 FILL - (CI-CH) SILTY CLAY, trace rounded fine gravel, trace organics, light grey/brown silt nodules; mottled grey and brown; cohesive, w~PL to w>PL, soft to 011-01 AS 0 firm SS 011-02 3 2 011-03 AS 0 224.79 (CH) CLAY; grey; cohesive, w>PL, soft 50.5 011-04 AS 0 011-05 TO 0 51.9 011-06 AS 011-07 SS 3 5 61.6 AS 011-08 57.2 011-09 TO G+ 011-10 AS 1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15 59.7 SS 58.3 011-12 AS (ML) SILT, some fine to coarse sand, trace to some gravel; very light grey, 011-13 AS 9 (TILL); non-cohesive, dry, dense ТО 011-14 011-15 SS 0 Screen 10 CONTINUED NEXT PAGE **DEPTH SCALE** LOGGED: JB Golder

Associates

LOCATION: N 5520108.0 E 632587.4

RECORD OF BOREHOLE: TH15-11

BORING DATE: 10/25/15 DRILL RIG: Acker SX (track) SHEET 2 OF 2

Щ	QQ.	SOIL PROFILE			SAM	IPLE:	S	DYNAN RESIS	IIC PEN FANCE,	ETRATI BLOWS	ON /0.3m	1	HYDR	AULIC C	ONDUCTIVI	TY, T	وَ بِـ	PIEZOMETER OF STANDPIPE	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAF Cu, kPa	STREM	IGTH	nat V. + rem V. €	80 - Q - •) U - O	w w	VATER C	0 ^{.5} 10 ^{.4} CONTENT PE OW 20 30	10 ⁻³ I ERCENT ——I WI 40	ADDITIONAL LAB. TESTING	INSTALLATION AND GROUNDWATEF OBSERVATIONS	R
- 10		CONTINUED FROM PREVIOUS PAGE (ML) SILT, some fine to coarse sand, trace to some gravel; very light grey, (TILL); non-cohesive, dry, dense (continued) - cobble/boulder inferred from coring resistance at 10.3m	φ φ																
- 11		- cobble/boulder inferred from coring resistance at 11.1m	δ δ		011-16	RC												Screen	
12		- cobble/boulder inferred from coring resistance at 11.9m	φ φ		011-17	SS							,	0				Screen	
13			φ φ		011-18	RC													11,500
14		LIMESTONE, white, bedded with slight dolomite alteration along bedding planes		213.21 13.72														Bentonite Pellets	
15		R=100% RQD=46%			011-19	RC													
16		R=97% RQD=28%			011-20	RC												Sand	200
17		R=100% RQD=45%			011-21	RC												X	1. 有 有 有 有 有 有 有 有 有 有 有
19		END OF BOREHOLE = 18.29m		18.29														12:	-
- 20																			
	PTH S	SCALE						Â	G	olde socia	r						<u> </u>	OGGED: JB	

RECORD OF BOREHOLE: TH15-12

SHEET 1 OF 3 DATUM: NAD83

LOCATION: N 5520040.6 E 632581.4 BORING DATE: 11/01/15

DRILL RIG: Acker SX (track)

DRILLING CONTRACTOR: Paddock Drilling Ltd.

ES.	ЕТНО	SOIL PROFILE	10			IPLE:	-	DYNAM RESIST		BLOW 40		80	1	k, cm/s		0-4	10 ⁻³	TING	PIEZOMETI STANDP INSTALLA	IPE
METINES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR Cu, kPa	STRE			+ Q - ● 9 U - O	w	ATER C	ONTEN	F PERC	ENT	ADDITIONAL LAB. TESTING	AND GROUNDW OBSERVA	/ATEI
\dashv	ă	ORDER OF THE PROPERTY OF THE P	ST				B	20)	40	60	80	1	0	20 :	30	40			
0	Т	GROUND SURFACE TOPSOIL	EZZ	232.87 232.77		Н				_										P
1		FILL - (CI) SILTY CLAY, trace sand, some organics; very dark grey; cohesive, w~PL, soft to firm - 10cm sand layer at 0.5m		0.10	012-01	AS										C				4
		(CL) SILTY CLAY, contains sand	***************************************	231.35 1.52		1														A .
2		interlayers; light brown, oxidation stains; cohesive, w>PL, soft			012-02		4							-	OI OI					PA
		(CH) silty CLAY; brown; cohesive,		230.59	012-03	AS									')				4
		(CH) sity CLAY; brown; conesive, w>PL, soft		2.29	012-04	AS											0			A 4 A 4 A 4
3																				a .
					012-05	SS	4										5	1.1		PA
																	- 1	0.1		24
4					012-06	AS									F			93		A 9 A 9 A 9
																	_			24
5		- 40° slickenside joint observed in 012-07			012-07	то			0		4	-						1.2		A 7 A 7 A 7 A 7 A 7
																				PA
7		- mottled brown and grey at 6.4m			012-08	SS	3											0		2 69 69 69 69 69
																				P
8					012-09	то				o		+					5	1.4	VW34551	2 82 82 82 82
9					012-10	SS	2								<u> </u>		6	1.5 O 90		ASPAS
		- grey below 9.8m																		A A
10		CONTINUED NEXT PAGE			<u> </u>	\dagger	-				+		† 		† -		†			_1°å:.

LOCATION: N 5520040.6 E 632581.4

RECORD OF BOREHOLE: TH15-12

BORING DATE: 11/01/15 DRILL RIG: Acker SX (track) SHEET 2 OF 3

ШΠ	HOD	SOIL PROFILE			SAN	/PLE	s	DYNAMIC PENETRATION \ RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, T PIEZOMETER C STANDPIPE
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O 20 40 60 80	No. cm/s No. cm/s
- 10 -		CONTINUED FROM PREVIOUS PAGE (CH) silty CLAY; brown; cohesive, w>PL, soft (continued)			012-11	то	· <u> </u>	+	69.4
12					012-12	SS	1		51.9
14		- 60° slickenside joint observed in 012-13			012-13	то		0 +	66.2
15		(SP-SW) silty SAND, fine to coarse, some gravel; very light grey, (TILL); non-cohesive, moist, very dense	ATP ATP ATP ATP ATP ATP	217.94 14.94	012-14	SS			0
17			TO A TO A CO A CO A CO A CO A CO A CO A		012-15	ss			O VW34552
18			AND		012-16				
19		R=90% RQD=20% LIMESTONE, white, bedded with slight		213.52 19.35	012-18	RC			Bentonite Pellets
20 -		LIMESTONE, white, bedded with slight dolomite alteration along bedding planes			012-19	RC	_		Sand

LOCATION: N 5520040.6 E 632581.4

RECORD OF BOREHOLE: TH15-12

BORING DATE: 11/01/15 DRILL RIG: Acker SX (track) SHEET 3 OF 3

								DRILLING CONTR		Paddock				
ш	HOD	SOIL PROFILE			SAM	IPLE	S	DYNAMIC PENETRA RESISTANCE, BLOV	TION VS/0.3m	1	HYDRAULIC C k, cm/s	CONDUCTIVITY, s	T 2	PIEZOMETER OR STANDPIPE
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT	E. E	K.	,).3m	20 40		30		10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	INSTALLATION AND
MET	SING	DESCRIPTION	ATA F	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH Cu, kPa	nat V. + rem V. ⊕	Q - • U - O		CONTENT PERCENT	DDDIT.8	GROUNDWATER
5	BOR		STR/	(m)	ž	ľ	BLO	20 40		30	Wp ├	OW WI 20 30 40	43	OBSERVATIONS
-		CONTINUED FROM PREVIOUS PAGE							Ī					
20	$ \Gamma$	LIMESTONE, white, bedded with slight dolomite alteration along bedding planes	H			Γ	_		777		T :	TT-		<i> </i>
		(continued)	异											
		R=100% RQD=37%	豆											
					012-19	RC								
21			呂											
			莊											
			异											
22		R=100% RQD=27%	臣											
		N-100 /6 NQD-27 /6	垚		012-20	RC								Sand
			井											
			臣											
			臣			-								
23														Sand
			井											
			井		012-21	RC								
			井											
24			H											
				208.49										(3)
		END OF BOREHOLE = 24.38m		24.38										
25														
26														
27														
-														
28														
29														
30														
DEF	PTH S	SCALE							1				į.	OGGED: JB
1:5								Gold	ier iates					
1:5	50							Assoc	iates				CH	IECKED: CR

N 5519104.4 E 632571.8

LOCATION:

1:50

RECORD OF BOREHOLE: TH15-13

BORING DATE: 10/30/15

DRILL RIG: Acker SX (track) DRILLING CONTRACTOR: Paddock Drilling Ltd. HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SAMPLES SOIL PROFILE PIEZOMETER OR BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES STANDPIPE INSTALLATION STRATA PLOI AND GROUNDWATER ELEV. BLOWS/0. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW **OBSERVATIONS** Wp H H WI (m) **GROUND SURFACE** 232.72 232.57 0.15 FILL - (CI) SILTY CLAY, trace to some sand, trace organic fibres; very dark grey; cohesive, w~PL, soft 013-01 AS 0 (MH) CLAYEY SILT, some sand; light 0.9 013-02 AS 0 brown; cohesive, w>PL, soft 231.20 (CH) CLAY; brown; cohesive, w>PL, soft to firm SS 0 013-03 2 013-04 AS 0 то 0 013-05 52.3 013-06 AS 56.2 013-07 TO 0 5 55.2 013-08 AS 6 57.6 013-09 ТО 0 - 75° slickenside joint observed in 7 55.6 013-10 AS 1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15 013-12 SS 013-13 AS 0 9 - grey below 9.1m 013-14 SS 3 0 10 CONTINUED NEXT PAGE **DEPTH SCALE**

Golder

SHEET 1 OF 2

N 5519104.4 E 632571.8

LOCATION:

RECORD OF BOREHOLE: TH15-13

SHEET 2 OF 2 DATUM: NAD83

BORING DATE: 10/30/15 DRILL RIG: Acker SX (track)

DRILLING CONTRACTOR: Paddock Drilling Ltd.

HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SOIL PROFILE SAMPLES PIEZOMETER OR BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STANDPIPE INSTALLATION STRATA PLOI AND GROUNDWATER ELEV. TYPE BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW **OBSERVATIONS** Wp F (m) CONTINUED FROM PREVIOUS PAGE 10 (CH) CLAY; brown; cohesive, w>PL, soft to firm (continued) AS 0 013-15 013-16 TO 11 - 90°, 60°, 70° slickenside joints observed in 013-16 54.2 013-17 AS 12 56.4 013-18 SS 3 13 57.3 013-19 AS 57.8 013-20 SS 3 14 58.6 013-21 AS 15 - trace gravel at 15.8m 013-22 AS 16 0 216.11 (SP) silty SAND, fine to coarse, some gravel; very light grey, (TILL); non-cohesive, moist to wet, dense 17 013-23 SS 0 013-24 AS 215.19 17.53 1537312 BOREHOLE LOGS.GPJ GAL-SASK.GDT 12/15/15 END OF BOREHOLE = 17.53m Notes: 1. Upon completion of drilling, the borehole was backfilled with cuttings and bentonite to the ground surface. 18 19 20 **DEPTH SCALE** Golder LOGGED: JB

1:50

CHECKED: CR

LOCATION: N 5519050.3 E 633499.7

RECORD OF BOREHOLE: TH15-14

BORING DATE: 10/14/15 DRILL RIG: Truck mounted MP8

DRILLING CONTRACTOR: Paddock Drilling Ltd.

SHEET 1 OF 3

. [90	SOIL PROFILE			SAM	IPLE:	s	DYNAI RESIS	MIC I	PENETRA ICE, BLOV	TION /S/0.3m	1	HYDRA	ULIC CC k, cm/s	NDUCT	IVITY,	T	J.S.	PIEZOMETER OR STANDPIPE
METRES	BORING METHOD		STRATA PLOT	ELEV.	띪	Ш	10.3m		20	40	60	80	10					ADDITIONAL LAB. TESTING	INSTALLATION AND
ME	RING	DESCRIPTION	SATA	DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAI Cu, kP	R ST a	RENGTH	nat V. rem V.	+ Q - € ⊕ U - C	WP		ONTENT			ADDI-	GROUNDWATER OBSERVATIONS
	BC		STE	(m)			BL	2	20	40	60	80	10				0	Ľ	
0	$\overline{}$	GROUND SURFACE TOPSOIL	EEE	232.81 232.65					-		+								TOC=233.8m
		(CI) SILTY CLAY, medium plasticity, trace sand; dark grey; cohesive, w>PL,		0.15															
		firm to stiff			014-01	AS										0			
		(CI) SILTY CLAY, medium to high		232.04 0.76	014 01	,,,													
1		plasticity; light grey; w>PL, firm																	
					014-02	AS										0			
					014-03	SS	7									(Þ		
2		- becoming (CH) at 2.0m			014-04	AS									_		0,	6	
		- 2.5cm clayey silt seam at 2.4m		230.06	014-05	AS										С			
3		(CH) CLAY, high plasticity; brown; cohesive, w>PL, firm		2.74															
3																	50		
					014-06	то				0			†				52.	ð	
4																	51. 9	 	
					014-07	AS									-		9	1	
	Auger				014-08	SS	4										54.	, ф	
5	Solid Stem Auger																		Bentonite Chips
	Solic																52	a	
					014-09	AS											52.	Φ	
		(CH) CLAY, high plasticity; oxidation stains; cohesive, w>PL, soft		227.01 5.79	014-10	AS											55.	 	
6		Stains, coriesive, w>FL, soit																	
		- 90° slickenside joint observed in			014-11	то				þ	+						55.	φ	
		014-11																	
7					014-12	AS											58. 8	† 	
															-			1	
		(CH) CLAY, high plasticity; oxidation		225.03 7.77	014-13	cc	3										0		
8		stains; cohesive, w>PL, soft			014-13	33	3												
					014-14	AS											8	9	
9																			
					014-15	TO					+						56.		
		- 50° slickenside joint observed in 013-09			017713	, ,												Ĭ	
10							_	L	_	L_									
,,,		CONTINUED NEXT PAGE																	
DF	РТН	I SCALE						Â	X									10	OGGED: JB
1:5								(Z	"	Gold	er ates								ECKED: CR

LOCATION: N 5519050.3 E 633499.7

RECORD OF BOREHOLE: TH15-14

BORING DATE: 10/14/15 DRILL RIG: Truck mounted MP8 SHEET 2 OF 3

ا <u>ب</u> د	ПООН	SOIL PROFILE			SAN	IPLE:		DYNAMIC PENETRA RESISTANCE, BLO	TION VS/0.3m	_	HYDRAULIC C k, cm/s	•	; _[AL	PIEZOMETER OF STANDPIPE
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT	ELEV.	BER	, 도	BLOWS/0.3m	20 40 SHEAR STRENGTH	60 80 nat V. +			0 ⁻⁵ 10 ⁻⁴ ONTENT PER	10 ⁻³ L	ADDITIONAL LAB. TESTING	INSTALLATION AND
DEPT	ORING	DESCRIPTION	RATA	DEPTH (m)	NUMBER	TYPE	LOWS	Cu, kPa	rem V. ⊕	ŭ - Ŏ		OW PER	-I WI	ADD LAB.	GROUNDWATER OBSERVATIONS
	B	pecus demokratik a superioran populatik noto statik static	S	(111)			B	20 40	60 80)	10	20 30	40		
10		CONTINUED FROM PREVIOUS PAGE (CH) CLAY, high plasticity; oxidation	7//			-	-	-	-+	+		+	-+		-
		stains; cohesive, w>PL, soft (continued)			014-16	AS							59.1	,	
					014-17	SS	3						60.4		
11															
													50.2		
					014-18	AS									
12															
					014-19	SS	4						0		
															D - 1 - 1 - 01
13						-							57 79		Bentonite Chips
					014-20	AS						-	79		
14					014-21	ТО)+				65.1 C	,	
					014-21										
	Auger			217.87	014-22	AS							60.9		
15	Solid Stem Auger	(SP) silty SAND, fine, trace gravel; light grey; non-cohesive, wet, compact	<i>////</i>	14.94	014-23	AS									
	Solic					1									
					014-24	SS	12					0			
16															
10		LIMESTONE; white, bedded with slight		216.65 16.15											Bentonite Pellets
		dolomitic alteration along bedding planes													Ä.
															ja ja
17			去												
			异												Sand S
			芸		014-25	BC.									 (3
		R=100% RQD=22%			014-25	1,0									Ŕ
18			臣) N
			串												
		R=100% RQD=91%			04.0-	-									
19			薜		014-26	RC									
			臣		L										Screen
			井		014-27	RC									Screen
		R=100% RQD=88%	臣		014-28										
20		CONTINUED NEXT PAGE				+ =	-		-+	+		 	-+		
				ı							1				

LOCATION: N 5519050.3 E 633499.7

RECORD OF BOREHOLE: TH15-14

BORING DATE: 10/14/15

DRILL RIG: Truck mounted MP8

DRILLING CONTRACTOR: Paddock Drilling Ltd.

SHEET 3 OF 3

DATUM: NAD83

								DRILLING C	ONTR	ACTOR	Paddocl	k Drilling	Ltd.					
щ	dol	SOIL PROFILE			SAM	/PLE	S	DYNAMIC PEI RESISTANCE	NETRA , BLOW	TION /S/0.3m	1	HYDR.	AULIC C	ONDUC	TIVITY,	Т	- J O	PIEZOMETER OR
DEPTH SCALE METRES	BORING METHOD		LOT		œ		3m		40	60	80	1			10-4	10 ⁻³	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
MET	ING	DESCRIPTION	TAP	ELEV. DEPTH	NUMBER	TYPE	NS/0	SHEAR STRE Cu, kPa	NGTH	nat V.	+ Q - ●	W	ATER C			ENT	DOTE B. TE	AND GROUNDWATER
7	BOR		STRATA PLOT	(m)	N	-	BLOWS/0.3m		40	60	80	VV	p I ——			40	Z Z	OBSERVATIONS
-		CONTINUED FROM PREVIOUS PAGE	1					20	1					20	1	1		
20		LIMESTONE: white hedded with slight	H	<u> </u>	014-28	RC	_			T-		T		T		T		
	Jer	dolomitic alteration along bedding planes (continued)	臣	1														
	m Aug		臣	1														
	Solid Stem Auger	R=100% RQD=83%	臣		014-29	RC												Screen
- 21	Sol		岸															
			臣	211.47														
		END OF BOREHOLE = 21.34m		21.34														
- 22																		
23																		
24																		
25																		
- 26																		
- 27																		
21																		
28																		
29																		
30																		
DF	PTH S	SCALE															į.	OGGED: JB
									soc	er iates								
1:	50							V As	soc	ates							CH	HECKED: CR

David Krahn 1537312
Dillon Consulting Ltd. December 16, 2015

APPENDIX C

Laboratory Testing Results

Project #: 1537312 Phase : 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. / E.H. Date: November 30, 2015

Sa	mple Iden	tification					L	aborat	ory Te	st Res	ults			
Borehole #	Sample #	Depth (m)	Sample Type	Water Content (%)	Plastic Limit	Liquid Limit	Plasticity Index	% Passing #200	SHT Group Index	ASTM Group Index	Specific Gravity	Dry Density (Kg/m³)	Pocket Penetrometer (kPa)	Lab Vane (kPa)
TH-15-001	001-01	0.61-1.22	AS	39.7										
TH-15-001	001-02	1.52-1.98	SS	37.0	31	95	64							
TH-15-001	001-03	2.29-2.59	AS	44.5										
TH-15-001	001-04	3.05-3.66	TO	51.7								1142	48	85
TH-15-001	001-05	3.66-4.11	SS	53.3	22	87	65							
TH-15-001	001-06	4.11-4.42	AS	48.6									10000	
TH-15-001	001-07	4.57-5.18	TO	51.5								1132	72	84
TH-15-001	001-08	5.18-5.64	SS	12										
TH-15-001	001-09	5.64-5.94	AS	48.8	23	84	61							
TH-15-001	001-10	6.10-6.55	SS	50.0										
TH-15-001	001-11	7.01-7.32	AS	48.1										
TH-15-001	001-12	7.62-8.23	TO	45.6								1198	36	74
TH-15-001	001-13	8.23-8.69	SS	47.5										
TH-15-001	001-14	8.69-8.99	AS	50.5	24	85	61							
TH-15-001	001-15	9.14-9.75	TO	50.6								1138	24	65
TH-15-001	001-16	9.75-10.21	SS	51.1										
TH-15-002	002-01	0.30-0.61	AS	40.3										
TH-15-002	002-02	0.91-1.22	AS	35.3										
TH-15-002	002-03	1.52-1.98	SS	23.8										
TH-15-002	002-04	2.04-2.13	AS	25.4	16	28	12							
TH-15-002	002-05	2.44-2.74	AS	42.0										
TH-15-002	002-06	3.05-3.66	TO	50.6	o=		0.0					1146	48	85
TH-15-002	002-07	3.96-4.27	AS	53.7	27	95	68							
TH-15-002	002-08	4.57-5.03	SS	50.8										
TH-15-002	002-09	5.49-5.79	AS	50.6								4405	0.0	70
TH-15-002	002-10	6.10-6.71	TO	51.4	00							1135	36	76
TH-15-002	002-11	7.01-7.32	AS	50.3	22	77	55							
TH-15-002	002-12	7.62-8.08	SS	48.8	40	74	50							
TH-15-002	002-13	8.23-8.53	AS	46.6	18	74	56							
TH-15-002	002-14	9.14-9.60	SS	45.7								1040	10	
TH-15-002	002-15	10.67-11.28	TO	51.2								1042	12	51
TH-15-002	002-16	12.19-12.65	SS	54.0										
TH-15-002	002-17	13.72-14.17	SS	11.5										
TH-15-002	002-18	14.33-14.40	SS											
TH-15-004	004-01	0.61-0.91	AS	26.5	22	70	40							
TH-15-004	004-02	1.22-1.52	AS	36.5	22	70	48							

The testing services reported herein have been performed in accordance with the indicated recognized standard, or in accordance with local industry practice. This report is for the sole use of the designated client. This report constitutes a testing service only and does not represent any results interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation can be provided by Golder Associates Ltd. upon request.

Project #: 1537312 Phase : 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. / E.H. Date: November 30, 2015

Sa	ample Iden	tification					L	aborat	ory Te	st Res	ults			
Borehole #	Sample #	Depth (m)	Sample Type	Water Content (%)	Plastic Limit	Liquid Limit	Plasticity Index	% Passing #200	SHT Group Index	ASTM Group Index	Specific Gravity	Dry Density (Kg/m³)	Pocket Penetrometer (kPa)	Lab Vane (kPa)
TH-15-004 TH-15-004 TH-15-004 TH-15-004	004-03 004-04 004-05 004-06	1.52-1.98 2.13-2.44 3.05-3.66 4.57-5.03	SS AS TO SS	46.6 38.6 54.0 59.0	21	64	43					1110	36	84
TH-15-004 TH-15-004 TH-15-004 TH-15-004	004-07 004-08 004-09 004-10	5.18-5.49 6.10-6.71 7.01-7.32 7.62-8.08	AS TO AS SS	48.0 56.5 50.0 52.4	21	78	57					1100	24	53
TH-15-004 TH-15-004 TH-15-004 TH-15-004	004-11 004-12 004-13 004-14	9.14-9.75 10.67-11.13 12.19-12.80 13.72-14.02	TO SS TO SS	46.3 59.4 63.1 11.1	12	17	5					1212 1090	24 12	55 38
TH-15-004 TH-15-004 TH-15-005	004-15a 004-15b 005-01	14.33-14.40 14.33-14.48 0.61-0.91	SS SS AS	11.0 20.9 34.1	12		J							
TH-15-005 TH-15-005 TH-15-005	005-02 005-03 005-04 005-05	1.68-1.98 2.44-2.74 3.05-3.66 3.96-4.27	AS TO AS	20.8 33.9 49.8 46.6	20	82	62					1167	36	103
TH-15-005 TH-15-005 TH-15-005 TH-15-005	005-06 005-07 005-08 005-09 005-10	4.57-5.03 5.49-5.79 6.10-6.71 7.01-7.32 7.62-8.08	SS AS TO AS SS	47.4 51.4 46.8 48.6 42.3	25	94	69					1189	60	91
TH-15-005 TH-15-005 TH-15-005 TH-15-005	005-11 005-12 005-13 005-14	8.23-8.53 9.14-9.75	AS TO AS	46.2 50.1 47.8 56.5	22	86	64					1150	24	66
TH-15-005 TH-15-005 TH-15-005 TH-15-005	005-15 005-16 005-17 005-18	11.28-11.58 12.19-12.80 13.72-14.17 15.24-15.70	AS TO SS SS	57.6 51.9 15.0 9.1	22	83	61					1291	12	61
TH-15-005 TH-15-006 TH-15-006 TH-15-006	005-20 006-01 006-02 006-03	16.76-17.22 0.61-0.91 1.52-1.98 2.13-2.44	AS SS	51.1										

The testing services reported herein have been performed in accordance with the indicated recognized standard, or in accordance with local industry practice. This report is for the sole use of the designated client. This report constitutes a testing service only and does not represent any results interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation can be provided by Golder Associates Ltd. upon request.

Project #: 1537312 Phase : 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. / E.H. Date: November 30, 2015

Sa	ample Iden	tification					L	aborat	ory Te	st Res	ults			
Borehole #	Sample #	Depth (m)	Sample Type	Water Content (%)	Plastic Limit	Liquid Limit	Plasticity Index	% Passing #200	SHT Group Index	ASTM Group Index	Specific Gravity	Dry Density (Kg/m³)	Pocket Penetrometer (kPa)	Lab Vane (kPa)
TH-15-006	006-04	3.05-3.66	TO	58.4								1059	24	70
TH-15-006	006-05	3.96-4.27	AS	57.5	25	95	70							
TH-15-006	006-06	4.57-5.03	SS											
TH-15-006	006-07	5.18-5.49	AS	50.2										
TH-15-006	006-08	6.10-6.71	TO	56.5								1128	36	87
TH-15-006	006-09	7.01-7.32	AS	53.4										
TH-15-006	006-10	7.62-8.08	SS	53.4	22	74	52							
TH-15-006	006-11	8.23-8.53	AS											
TH-15-006	006-12	9.14-9.75	TO	46.3								1229	12	61
TH-15-006	006-13	10.06-10.36	AS											
TH-15-006	006-14	10.67-11.13	SS	60.4										
TH-15-006	006-15	11.28-11.58	AS											
TH-15-006	006-16	12.19-12.80	TO	70.9								934	0	42
TH-15-006	006-17	12.80-13.11	AS	48.5	20	73	53							
TH-15-006	006-18	13.11-13.41	AS											
TH-15-006	006-19	13.72-14.17	SS	10.9										
TH-15-006	006-20	15.24-15.39	AS	8.9										
TH-15-006	006-21	15.39-15.54	SS		11	15	4							
TH-15-006	006-23	16.15-17.07	SS											
TH-15-007	007-01	0.30-0.30	AS	27.8										
TH-15-007	007-02	0.76-1.07	AS	29.5										
TH-15-007	007-03	1.52-1.98	SS	41.0										
TH-15-007	007-04	1.98-2.29	AS	39.6										
TH-15-007	007-05	2.29-2.59	AS	39.4	21	64	43							
TH-15-007	007-06	2.59-2.90	AS	46.7										
TH-15-007	007-07	3.05-3.66	TO	54.3								1099	24	76
TH-15-007	007-08	3.96-4.27	AS	53.6										
TH-15-007	007-09	4.57-5.03	SS	54.0	28	97	69							
TH-15-007	007-10	5.18-5.49	AS	50.2								***	212	200
TH-15-007	007-11	6.10-6.71	TO	48.3								1182	48	84
TH-15-007	007-12	7.01-7.32	AS	46.6										
TH-15-007	007-13	7.62-8.08	SS	44.0	23	79	56							
TH-15-007	007-14	8.53-8.84	AS	36.0								200 000 1000 1000	200	1999 199
TH-15-007	007-15	9.14-9.75	TO	53.3								1109	36	91
TH-15-007	007-16	10.06-10.36	AS	49.8										
TH-15-007	007-17	10.67-11.13	SS	53.2	21	77	56							

The testing services reported herein have been performed in accordance with the indicated recognized standard, or in accordance with local industry practice. This report is for the sole use of the designated client. This report constitutes a testing service only and does not represent any results interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation can be provided by Golder Associates Ltd. upon request.

Project #: 1537312 Phase : 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. / E.H. Date: November 30, 2015

Sa	ample Iden	tification					L	aborat	ory Te	st Res	ults			
Borehole #	Sample #	Depth (m)	Sample Type	Water Content (%)	Plastic Limit	Liquid Limit	Plasticity Index	% Passing #200	SHT Group Index	ASTM Group Index	Specific Gravity	Dry Density (Kg/m³)	Pocket Penetrometer (kPa)	Lab Vane (kPa)
TH-15-007 TH-15-007 TH-15-007 TH-15-007 TH-15-007 TH-15-007	007-18 007-19 007-20 007-21 007-22 007-23 007-24	11.58-11.89 12.19-12.80 13.11-13.41 13.72-14.17 14.33-14.63 15.24-15.39 16.76-16.92	AS TO AS SS AS SS SS	55.2 41.9 24.2 21.3 10.9 39.4 8.4	12	19	7					1265	12	23
TH-15-008 TH-15-008 TH-15-008 TH-15-008 TH-15-008 TH-15-008 TH-15-008 TH-15-008 TH-15-008	008-01 008-02 008-03 008-04 008-05 008-06 008-07 008-08 008-09 008-10	0.61-0.91 1.52-1.98 1.98-2.29 2.29-2.59 2.59-2.90 3.05-3.66 3.96-4.27 4.57-5.03 5.49-5.79 6.10-6.71	AS AS AS AS TO AS SS AS TO	28.7 31.3 41.1 40.4 43.5 52.0 53.0 56.0 54.9 54.7	24	95	71					1121	24	80
TH-15-008 TH-15-008 TH-15-008 TH-15-008	008-11 008-12 008-13 008-14	7.01-7.32 7.62-8.08 8.23-8.53 9.14-9.75	AS AS AS TO	48.9 45.0 46.6 49.0	26	81	55					1169	12	61
TH-15-008 TH-15-008 TH-15-008 TH-15-008	008-15 008-16 008-17 008-18	10.06-10.36 10.67-11.13 11.58-11.89 12.19-12.80	AS SS AS TO	50.9 59.2 55.9 62.2	28	96	68					1019	12	57
TH-15-008 TH-15-008 TH-15-008 TH-15-008 TH-15-008 TH-15-008 TH-15-008	008-19 008-20 008-21 008-22 008-23 008-24 008-26 008-28	13.11-13.41 13.72-14.17 14.33-14.63 14.78-15.09 15.24-15.54 16.76-16.79 18.29-18.44 19.81-19.96		53.2 57.0 57.2 13.6 8.8 3.1	Noi	n-Pla:	stic							
TH-15-008 TH-15-009 TH-15-009	008-30 009-01 009-02	21.34-21.79 0.61-0.91 1.22-1.52	SS AS AS	12.6 39.8										

The testing services reported herein have been performed in accordance with the indicated recognized standard, or in accordance with local industry practice. This report is for the sole use of the designated client. This report constitutes a testing service only and does not represent any results interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation can be provided by Golder Associates Ltd. upon request.

Project #: 1537312 Phase : 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. / E.H. Date: November 30, 2015

Sa	ample Iden	tification					L	aborat	ory Te	st Res	ults			
Borehole #	Sample #	Depth (m)	Sample Type	Water Content (%)	Plastic Limit	Liquid Limit	Plasticity Index	% Passing #200	SHT Group Index	ASTM Group Index	Specific Gravity	Dry Density (Kg/m³)	Pocket Penetrometer (kPa)	Lab Vane (kPa)
TH-15-009	009-03	1.52-1.98	SS											
TH-15-009	009-04	2.13-2.44	AS	40.3	24	94	70							
TH-15-009	009-05	3.05-3.66	TO	49.6								1188	12	66
TH-15-009	009-06	3.96-4.27	AS	53.6										
TH-15-009	009-07	4.57-5.03	SS											
TH-15-009	009-08	5.49-5.79	AS	56.8										
TH-15-009	009-09	6.10-6.71	TO	56.6								1085	12	53
TH-15-009	009-10	7.01-7.32	AS	63.6										
TH-15-009	009-11	7.62-8.08	SS	52.2	25	79	54							
TH-15-009	009-12	8.53-8.84	AS											
TH-15-009	009-13	9.14-9.75	TO	46.2								1221	24	80
TH-15-009	009-14	10.06-10.36	AS											
TH-15-009	009-15	10.67-11.13	SS	49.5	22	90	68							
TH-15-009	009-16	11.58-11.89	AS											
TH-15-009	009-17	12.19-12.80	TO	35.6								1308	0	55
TH-15-009	009-18	13.11-13.41	AS	(2)										
TH-15-009	009-19	13.72-14.17	SS	42.7										
TH-15-009	009-20	14.63-14.94	AS											
TH-15-009	009-21	15.24-15.70	SS	10.1	11	13	2							
TH-15-009	009-22	15.70-15.85	AS	10.0										
TH-15-009	009-24	18.29-18.44	SS	8.4										
TH-15-010	010-01	0.61-0.91	AS	35.7										
TH-15-010	010-02	1.52-1.98	SS	29.9										
TH-15-010	010-03	2.44-2.74	AS	32.7										
TH-15-010	010-04	3.05-3.66	TO	51.5								1151	12	68
TH-15-010	010-05	3.96-4.27	AS	54.5	25	97	72							
TH-15-010	010-06	4.57-5.03	SS	50.5										
TH-15-010	010-07	5.18-5.49	AS	49.4										
TH-15-010	010-08	6.10-6.71	TO	53.7	2.							1123	48	80
TH-15-010	010-09	7.01-7.32	AS	46.9	21	84	63							
TH-15-010	010-10	7.62-8.08	SS	49.3										
TH-15-010	010-11	8.23-8.53	AS	51.0										
TH-15-010	010-12	9.14-9.75	TO	56.7			200					1102	12	68
TH-15-010	010-13	10.06-10.36	AS	50.7	23	84	61							
TH-15-010	010-14	10.67-11.13	SS	57.5										
TH-15-010	010-15	11.58-11.89	AS	53.8										

The testing services reported herein have been performed in accordance with the indicated recognized standard, or in accordance with local industry practice. This report is for the sole use of the designated client. This report constitutes a testing service only and does not represent any results interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation can be provided by Golder Associates Ltd. upon request.

Project #: 1537312 Phase : 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. / E.H. Date: November 30, 2015

Sa	ample Iden	tification					L	aborat	ory Te	st Res	ults			
Borehole #	Sample #	Depth (m)	Sample Type	Water Content (%)	Plastic Limit	Liquid Limit	Plasticity Index	% Passing #200	SHT Group Index	ASTM Group Index	Specific Gravity	Dry Density (Kg/m³)	Pocket Penetrometer (kPa)	Lab Vane (kPa)
TH-15-010	010-16	12.19-12.80	TO	57.0								1075	12	46
TH-15-010	010-17	13.11-13.41	AS	52.6										
TH-15-010	010-18a	13.72-14.02	SS	62.0										
TH-15-010	010-18b	14.02-14.17	SS	48.3										
TH-15-010	010-19	14.63-14.94	AS	9.2	13	15	2							
TH-15-010	010-20	15.24-15.39	AS	12.5										
TH-15-011	011-01	0.61-0.91	AS	44.9										
TH-15-011	011-02	1.52-1.98	SS	48.8	24	68	44							
TH-15-011	011-03	1.98-2.13	AS	47.4										
TH-15-011	011-04	2.44-2.74	AS	50.5										
TH-15-011	011-05	3.05-3.66	TO	47.1								1176	12	61
TH-15-011	011-06	3.66-3.96	AS	51.9	25	78	53							
TH-15-011	011-07	4.57-5.03	SS	49.1										
TH-15-011	011-08	5.18-5.49	AS	61.6										
TH-15-011	011-09	6.10-6.71	TO	57.2								1120	0	49
TH-15-011	011-10	7.01-7.32	AS	50.5	20	73	53							
TH-15-011	011-11	7.62-8.08	SS	59.7										
TH-15-011	011-12	8.23-8.53	AS	58.3										
TH-15-011	011-13	8.69-8.99	AS	9.9	12	17	5							
TH-15-011	011-14	9.14-9.30	TO										84	61
TH-15-011	011-15	9.45-9.60	SS	5.7										
TH-15-011	011-17	12.19-12.34	SS	9.7										
TH-15-012	012-01	0.61-0.91	AS	37.7	4.0	0.0	4.0							
TH-15-012	012-02	1.52-1.98	SS	24.4	16	26	10							
TH-15-012	012-03	1.98-2.29	AS	29.6										
TH-15-012	012-04	2.44-2.74	AS	38.8										
TH-15-012	012-05	3.05-3.51	SS	51.1	00	00	0.5							
TH-15-012	012-06	3.66-3.96	AS	50.1	28	93	65					4440	24	70
TH-15-012	012-07	4.57-5.18	TO	51.2								1142	24	76
TH-15-012	012-08	6.10-6.55	SS	49.4								1111	26	01
TH-15-012 TH-15-012	012-09	7.62-8.23	TO	51.4	22	00	67					1144	36	91
TH-15-012	012-10	9.14-9.60	SS	61.5	23	90	67						12	40
	012-11	10.67-11.28	TO	69.4									12	49
TH-15-012 TH-15-012	012-12 012-13	12.19-12.65	SS	51.9								1026	12	57
TH-15-012	012-13	13.72-14.33 15.24-15.70	TO SS	66.2	NIA	n-Pla	ctic					1020	12	3/
10-15-012	012-14	15.24-15.70	33	8.1	OVI	ıı-rıa	Suc							

The testing services reported herein have been performed in accordance with the indicated recognized standard, or in accordance with local industry practice. This report is for the sole use of the designated client. This report constitutes a testing service only and does not represent any results interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation can be provided by Golder Associates Ltd. upon request.

Project #: 1537312 Phase : 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. / E.H. Date: November 30, 2015

Sa	ample Iden	tification					L	aborat	ory Te	st Res	ults			
Borehole #	Sample #	Depth (m)	Sample Type	Water Content (%)	Plastic Limit	Liquid Limit	Plasticity Index	% Passing #200	SHT Group Index	ASTM Group Index	Specific Gravity	Dry Density (Kg/m³)	Pocket Penetrometer (kPa)	Lab Vane (kPa)
TH-15-012	012-15	16.76-16.92	SS	7.6										
TH-15-012	012-17	18.29-18.44	SS	7.2										
TH-15-013	013-01	0.61-0.91	AS	37.1										
TH-15-013	013-02	0.91-1.22	AS	26.0										
TH-15-013	013-03	1.52-1.98	SS	32.6										
TH-15-013	013-04	2.13-2.44	AS	42.6	27	90	63							
TH-15-013	013-05	3.05-3.66	TO	47.2								1165	24	76
TH-15-013	013-06	3.96-4.27	AS	52.3										
TH-15-013	013-07	4.57-5.18	TO	56.2								1092	24	95
TH-15-013	013-08	5.49-5.79	AS	55.2										
TH-15-013	013-09	6.10-6.71	TO	57.6								1097	60	91
TH-15-013	013-10	7.01-7.32	AS	55.6										
TH-15-013	013-12	7.62-8.08	SS	49.1	26	75	49							
TH-15-013	013-13	8.23-8.53	AS	47.7										
TH-15-013	013-14	9.14-9.60	SS	45.5										
TH-15-013	013-15	10.06-10.36	AS	44.9										
TH-15-013	013-16	10.67-11.28	TO											
TH-15-013	013-17	11.58-11.89	AS	54.2	25	90	65							
TH-15-013	013-18	12.19-12.65	SS	56.4										
TH-15-013	013-19	13.11-13.41	AS	57.3										
TH-15-013	013-20	13.72-14.17	SS	57.8										
TH-15-013	013-21	14.63-14.94	AS	58.6										
TH-15-013	013-22	15.85-16.15	AS	35.0	12	42	30							
TH-15-013	013-23	16.76-17.22	SS	11.8										
TH-15-013	013-24	17.22-17.53	AS	9.9										
TH-15-014	014-01	0.46-0.76	AS	38.5										
TH-15-014	014-02	1.07-1.37	AS	34.5										
TH-15-014	014-03	1.52-1.98	SS	40.2										
TH-15-014	014-04	1.98-2.29	AS	45.7	27	96	69							
TH-15-014	014-05	2.44-2.59	AS	39.1										
TH-15-014	014-06	3.05-3.66	TO	52.8								1127	48	99
TH-15-014	014-07	3.96-4.27	AS	51.6	27	91	64							
TH-15-014	014-08	4.57-5.03	SS	54.7										
TH-15-014	014-09	5.49-5.79	AS	52.8										
TH-15-014	014-10	5.94-6.25	AS	55.9									2-0	
TH-15-014	014-11	6.25-6.71	TO	55.7								1087	24	68

The testing services reported herein have been performed in accordance with the indicated recognized standard, or in accordance with local industry practice. This report is for the sole use of the designated client. This report constitutes a testing service only and does not represent any results interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation can be provided by Golder Associates Ltd. upon request.

Project #: 1537312 Phase : 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. / E.H. Date: November 30, 2015

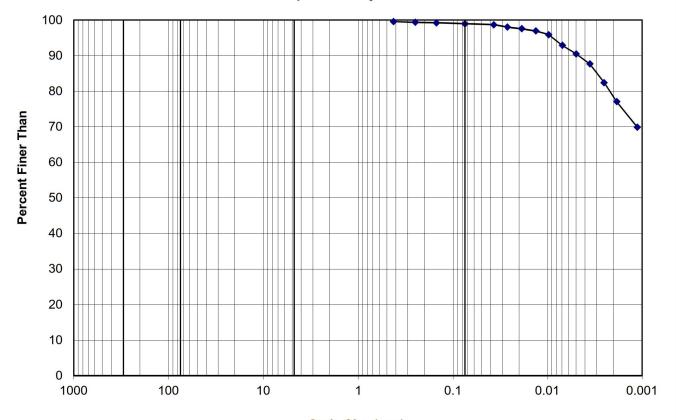
San	mple Iden	tification					L	aborat	ory Te	st Res	ults			
Borehole #	Sample #	Depth (m)	Sample Type	Water Content (%)	Plastic Limit	Liquid Limit	Plasticity Index	% Passing #200	SHT Group Index	ASTM Group Index	Specific Gravity	Dry Density (Kg/m³)	Pocket Penetrometer (kPa)	Lab Vane (kPa)
TH-15-014 TH-15-014 TH-15-014 TH-15-014 TH-15-014 TH-15-014 TH-15-014 TH-15-014 TH-15-014 TH-15-014 TH-15-014	014-12 014-13 014-14 014-15 014-16 014-17 014-18 014-20 014-21 014-22 014-23 014-24	6.86-7.16 7.62-8.08 8.08-8.38 9.14-9.75 10.21-10.52 10.67-11.13 11.43-11.73 12.19-12.65 13.11-13.41 13.72-14.33 14.63-14.94 15.09-15.24 15.24-15.70	AS SS AS TO	58.7 47.1 49.6 56.2 59.1 60.4 50.9 57.0 65.1 60.9 23.3 32.3	24 24 23	80 80 79	5 56 56 56	% F	HS Inde	-SA Inde	Spe	1109 1109	24	Гар (кр.

The testing services reported herein have been performed in accordance with the indicated recognized standard, or in accordance with local industry practice. This report is for the sole use of the designated client. This report constitutes a testing service only and does not represent any results interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation can be provided by Golder Associates Ltd. upon request.

(Mechanical & Hydrometer)

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB


Tested by: T.B.

Borehole #: TH-15-002 Sample #: 002-09

Source:

Date Sample Received: November 5, 2015

Graphical Analysis

Grain Size (mm)

во	ULDERS	COBBLES	GR/	AVEL		SAND		SILT / CLAY
			Coarse	Fine	Coarse	Medium	Fine	

Grain Size Analysis Results:

Date: December 3, 2015

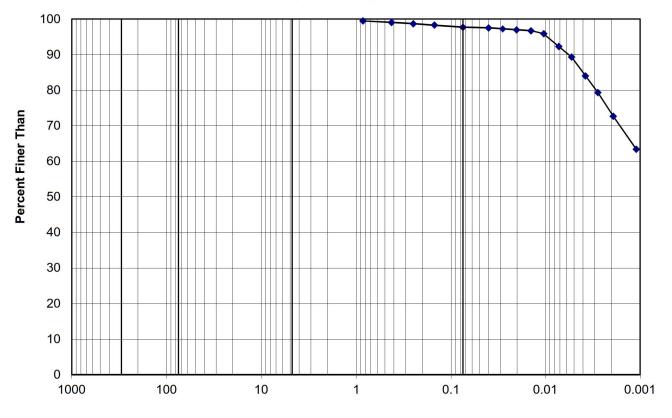
	Percent	
Opening	Passing	
(mm)	(%)	
152	100	
76	100	
38	100	
19	100	
9.5	100	
4.75	100	
2.0	100	
0.850	100	
0.425	100	
0.250	99	
0.150	99	
0.075	99	
0.037	99	
0.026	98	
0.019	98	
0.013	97	
0.010	96	
0.007	93	
0.005	91	
0.004	88	
0.003	82	
0.002	77	
0.001	70	

Comments:

(Mechanical & Hydrometer)

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB


Tested by: J.H. Date: November 23, 2015

Borehole #: TH-15-006 Sample #: 006-09

Source:

Date Sample Received: November 5, 2015

Graphical Analysis

Grain Size (mm)

BOULDER	RS COBBLES	GRAVEL COBBLES		SAND			SILT / CLAY
		Coarse	Fine	Coarse	Medium	Fine	

Grain Size Analysis Results:

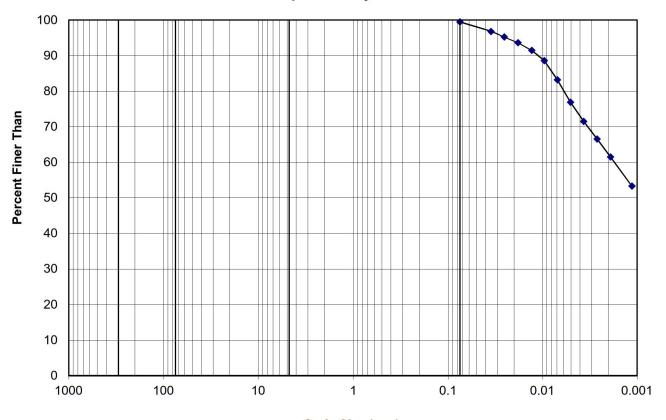
	Percent	
Opening	Passing	
(mm)	(%)	
152	100	
76	100	
38	100	
19	100	
9.5	100	
4.75	100	
2.0	100	
0.850	100	
0.425	99	
0.250	99	
0.150	98	
0.075	98	
0.040	98	
0.028	97	
0.020	97	
0.014	97	
0.010	96	
0.007	92	
0.005	89	
0.004	84	
0.003	79	
0.002	73	
0.001	63	

Comments:

(Mechanical & Hydrometer)

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB


Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-008 Sample #: 008-11

Source:

Date Sample Received: November 5, 2015

Graphical Analysis

Grain Size (mm)

BOULDERS COBE	COBBLES	GRAVEL		SAND			SILT / CLAY
		Coarse	Fine	Coarse	Medium	Fine	

Grain Size Analysis Results:

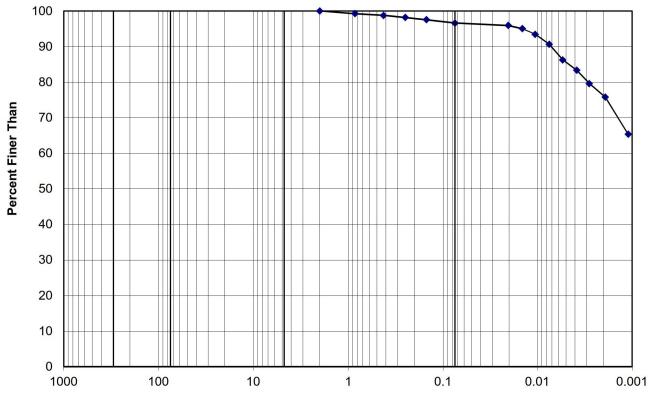
	Percent	
Opening	Passing	
(mm)	(%)	
152	100	
76	100	
38	100	
19	100	
9.5	100	
4.75	100	
2.0	100	
0.850	100	
0.425	100	
0.250	100	
0.150	100	
0.075	100	
0.035	97	
0.025	95	
0.018	94	
0.013	91	
0.010	89	
0.007	83	
0.005	77	
0.004	72	
0.003	67	
0.002	62	
0.001	53	

Comments:

(Mechanical & Hydrometer)

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB


Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-010 Sample #: 010-13

Source:

Date Sample Received: November 5, 2015

Graphical Analysis

Grain Size (mm)

BOULDERS	RS CO	COBBLES	COBBLES GRAVEL			SAND		SILT / CLAY
			Coarse	Fine	Coarse	Medium	Fine	

Grain Size Analysis Results:

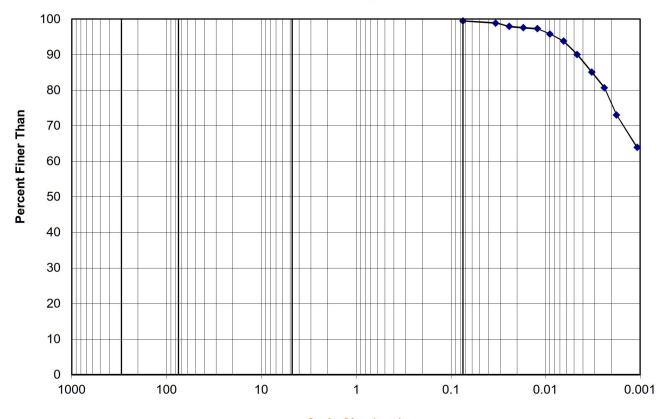
	Percent
Opening	Passing
(mm)	(%)
152	100
76	100
38	100
19	100
9.5	100
4.75	100
2.0	100
0.850	99
0.425	99
0.250	98
0.150	98
0.075	97
0.020	96
0.014	95
0.011	94
0.008	91
0.005	86
0.004	83
0.003	80
0.002	76
0.001	65

Comments:

(Mechanical & Hydrometer)

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB


Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-012 Sample #: 012-08

Source:

Date Sample Received: November 5, 2015

Graphical Analysis

Grain Size (mm)

BOULDERS	COBBLES	GR/	AVEL		SAND		SILT / CLAY
BOOLDEIG	COBBLEG	Coarse	Fine	Coarse	Medium	Fine	SIET / SEAT

Grain Size Analysis Results:

	Percent	
Opening	Passing	
(mm)	(%)	
152	100	7
76	100	
38	100	
19	100	
9.5	100	
4.75	100	
2.0	100	
0.850	100	
0.425	100	
0.250	100	
0.150	100	
0.075	100	
0.034	99	
0.024	98	
0.017	98	
0.012	97	
0.009	96	
0.006	94	
0.005	90	
0.003	85	
0.002	81	
0.002	73	
0.001	64	

Comments:

CORE COMPRESSIVE STRENGTH REPORT

2000 Project #: Phase:

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: November 27, 2015 J.H. / M.M. Date:

				COR	E INFORMAT	ION			Dry
Borehole #	Sample #	Depth (m)	Core Diameter (mm)	Core Length (mm)	Correction Factor	Type of Fracture	Strength (Mpa)	Date Tested	Density (Kg/m3)
TH-15-005	005-23	19.20-19.81	-	-	-	-	-	-	2705
TH-15-005	005-24	19.81-21.34	63.40	126.30	1.00	1	36.5	26-Nov-15	-
TH-15-006	006-25	18.29-19.81	63.12	126.99	1.00	1	74.1	17-Nov-15	2354
TH-15-007	007-26	19.81-21.34		-	-	-	-	-	2259
TH-15-009	009-26	19.81-21.34	63.00	86.44	0.94	2	63.3	17-Nov-15	-
TH-15-011	011-20	15.24-16.76	63.40	114.90	0.98	3	41.5	26-Nov-15	2444
TH-15-012	012-19	19.81-21.34	63.22	109.26	0.98	2	61.0	17-Nov-15	2476
TH-15-014	014-27	19.35-19.81	63.10	110.90	0.98	3	61.1	2-Nov-15	2359

Type of Fracture codes:

REMARKS:

Testing carried out in general accordance with CSA CAN3-A23.2-00 Correction factors for core strength are according to CSA A23.2-14C

SIGNED

Unconfined Compression

Project #: 1537312 Phase: 2000

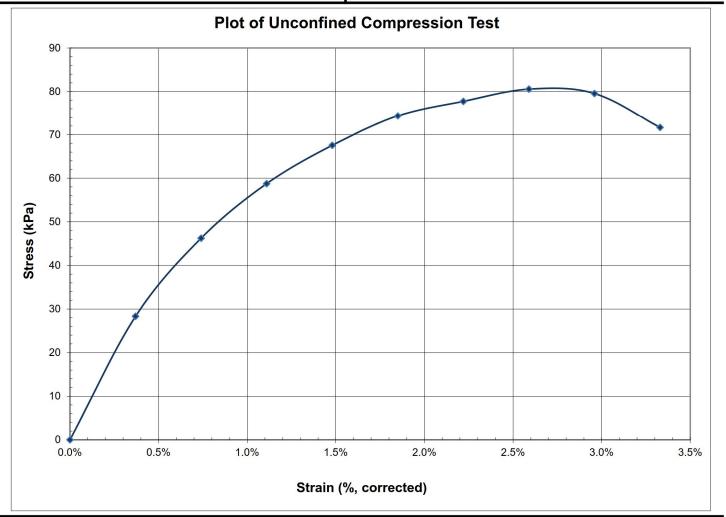
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: S.H. Date: October 28, 2015

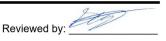
Borehole #: TH-15-001 Sample #: 001-04

Source:

Visual Description of Sample: (CH) CLAY, trace white fine grained sand nodules, brown, cohesive w>PL, firm.


49.7

Date Sample Received: October 25, 2015


Compressive Stress at Failure (kPa): 80.5
Strain at Failure (%): 2.6
Undrained Shear Strength (kPa): 40.3

Water Content (%):

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

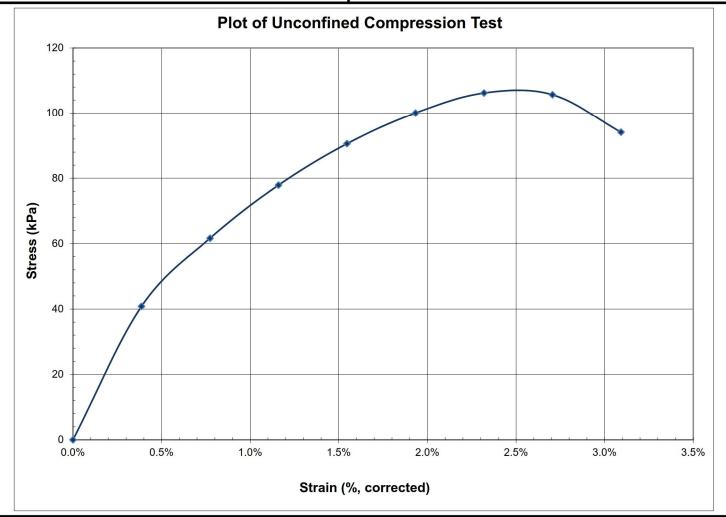
Unconfined Compression

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: S.H. Date: October 28, 2015

Borehole #: TH-15-001 Sample #: 001-07


Source:

Visual Description of Sample: (CH) CLAY, trace white fine grained sand nodules, brown, cohesive w>PL, firm.

Date Sample Received: October 25, 2015

Compressive Stress at Failure (kPa): 106.2
Strain at Failure (%): 2.3
Undrained Shear Strength (kPa): 53.1
Water Content (%): 52.8

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

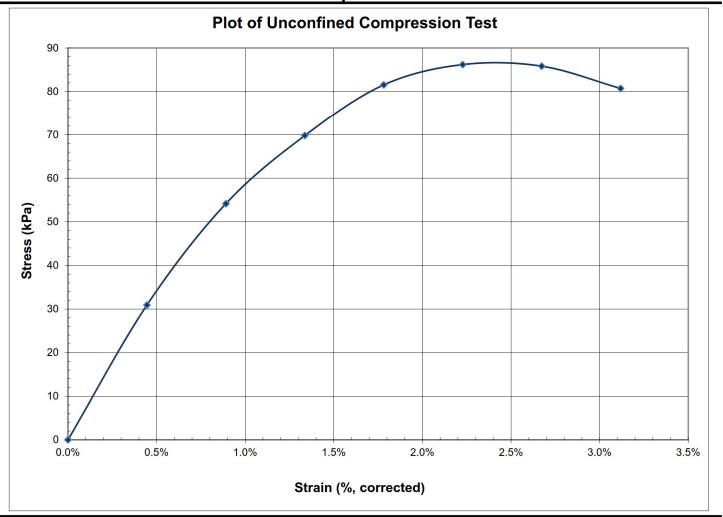
Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: S.H. Date: October 28, 2015

Borehole #: TH-15-001 Sample #: 001-12

Source:


Visual Description of Sample: (CH) CLAY, white fine grained sand nodules, grey, cohesive, w>PL, firm to soft.

Date Sample Received: October 25, 2015

Compressive Stress at Failure (kPa): 86.2
Strain at Failure (%): 2.2
Undrained Shear Strength (kPa): 43.1

Water Content (%): 51.3

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

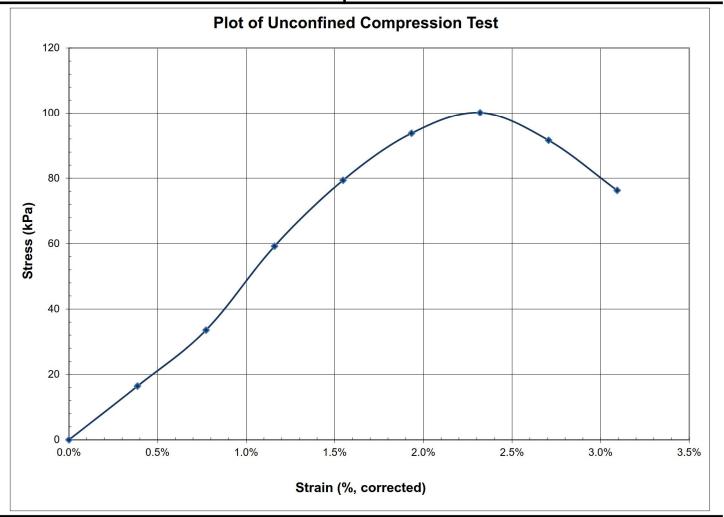
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: S.H. Date: October 28, 2015

Borehole #: TH-15-001 Sample #: 001-15

Source:

Visual Description of Sample: (CH) CLAY, white fine grained sand nodules, grey, cohesive, w>PL, soft.


51.7

Date Sample Received: October 25, 2015

Compressive Stress at Failure (kPa): 100.1
Strain at Failure (%): 2.3
Undrained Shear Strength (kPa): 50.1

Water Content (%):

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

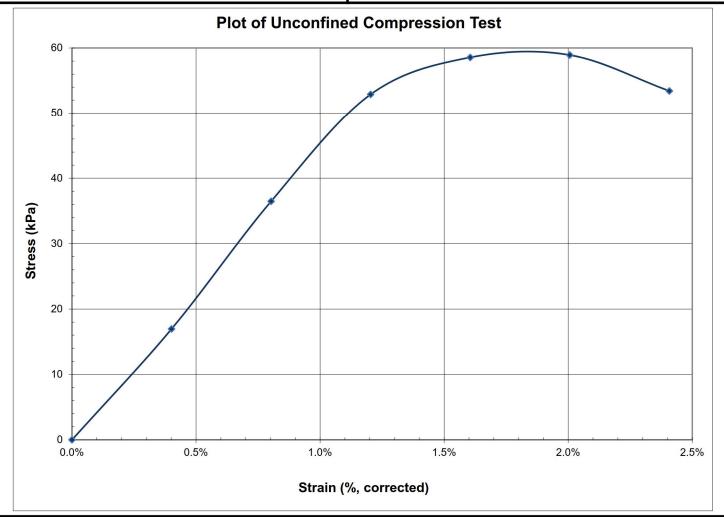
Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: S.H. Date: October 28, 2015

Borehole #: TH-15-002 Sample #: 002-06

Source:


Visual Description of Sample: (CH) CLAY, white fine grained sand nodules, brown, cohesive, w>PL, soft.

Date Sample Received: October 25, 2015

Compressive Stress at Failure (kPa): 58.9
Strain at Failure (%): 2.0
Undrained Shear Strength (kPa): 29.5

Shear Strength (kPa): 29.5
Water Content (%): 51.6

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

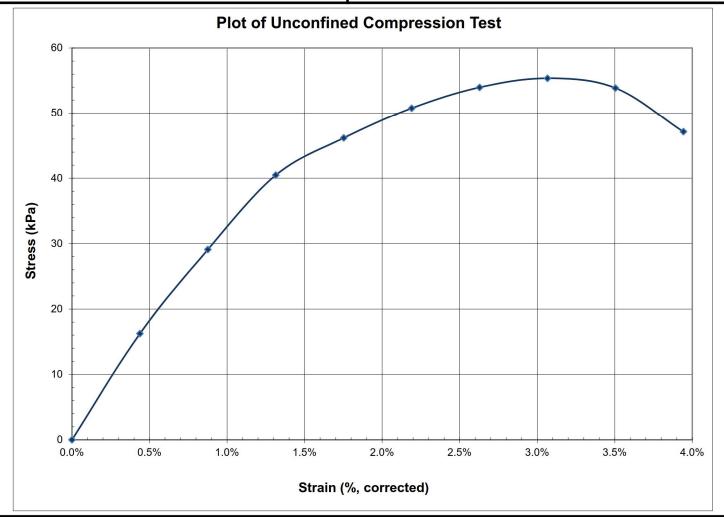
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: S.H. Date: October 28, 2015

Borehole #: TH-15-002 Sample #: 002-10

Source:

Visual Description of Sample: (CH) CLAY, white fine grained sand nodules, brown, cohesive, w>PL, soft.


Date Sample Received: October 25, 2015

Compressive Stress at Failure (kPa): 55.4
Strain at Failure (%): 3.1

Undrained Shear Strength (kPa): 27.7

Water Content (%): ______51.3

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

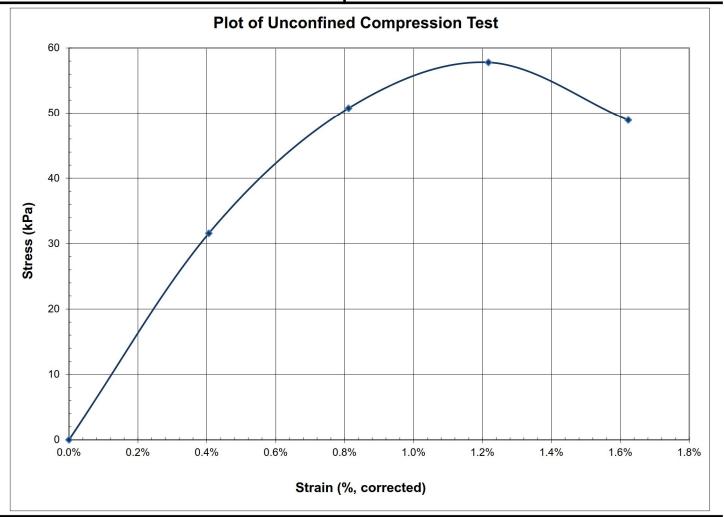
Tested by: S.H. Date: October 28, 2015

Borehole #: TH-15-002 Sample #: 002-15

Source:

Visual Description of Sample: (CH) CLAY, white fine grained sand nodules, grey, cohesive, w>PL, soft to very soft.

Date Sample Received: October 25, 2015


Compressive Stress at Failure (kPa): 57.8

Strain at Failure (%): 1.2

Undrained Shear Strength (kPa): 28.9
Water Content (%): 61.3

Water Content (%): 61.3

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

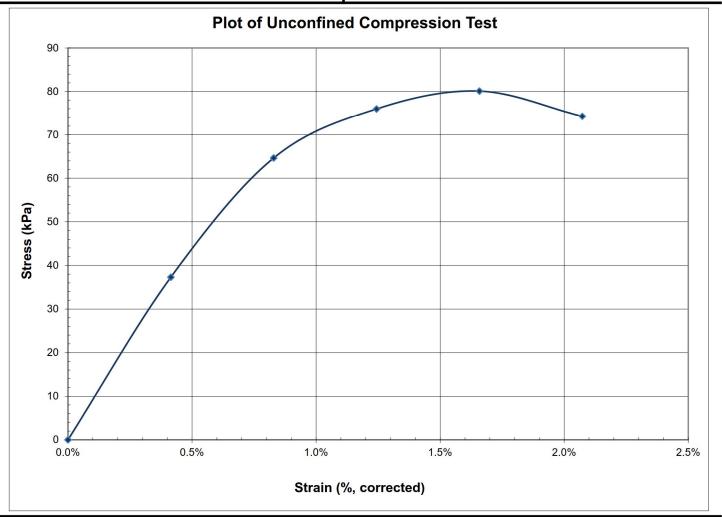
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-004 Sample #: 004-05

Source:

Visual Description of Sample: (CH) silty CLAY, motteled brown-grey, cohesive, w>PL, firm.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 80.1

Strain at Failure (%): 1.7
Undrained Shear Strength (kPa): 40.0

Water Content (%): 52.2

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

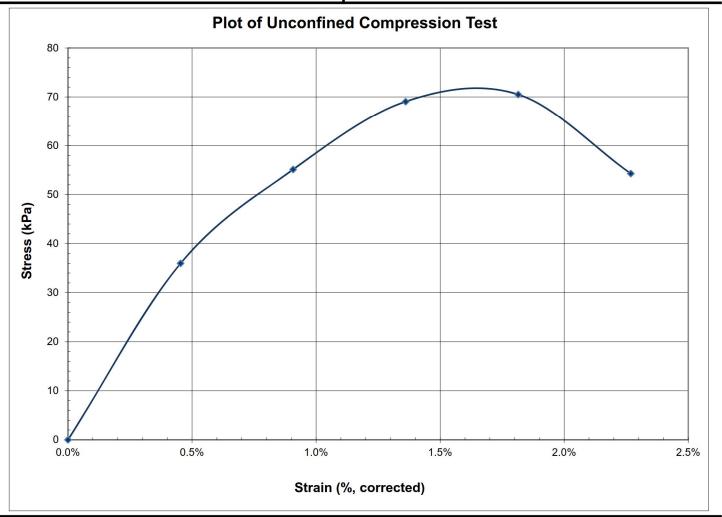
Borehole #: TH-15-004 Sample #: 004-08

Source:

Visual Description of Sample: (CH) silty CLAY, grey, cohesive, w>PL, firm.

Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 70.5
Strain at Failure (%): 1.8


Undrained Shear Strength (kPa): 35.2

Water Content (%): 60.3

Compressive Stress at 15% Strain (kPa): N/A

Undrained Shear Strength (kPa): N/A

Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

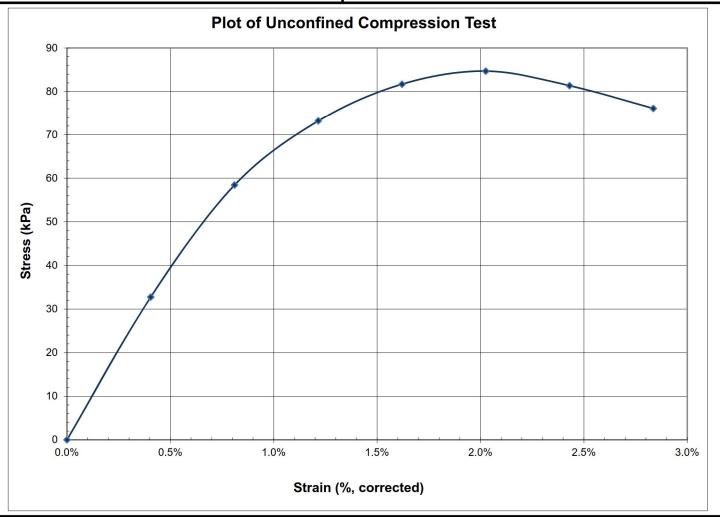
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-004 Sample #: 004-11

Source:

Visual Description of Sample: (CH) silty CLAY, grey, cohesive, w>PL, firm.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 84.7
Strain at Failure (%): 2.0

Undrained Shear Strength (kPa): 42.3

Water Content (%): 61.4

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

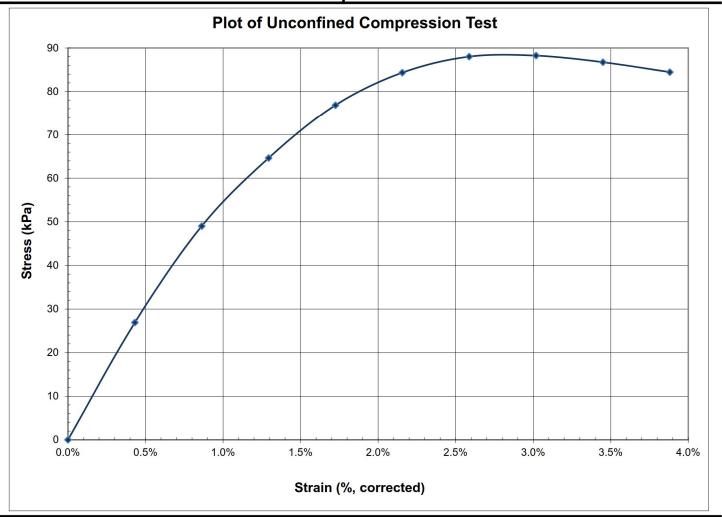
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-004 Sample #: 004-13

Source:

Visual Description of Sample: (CH) silty CLAY, mottled brown-grey, cohesive, w>PL, firm.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): 88.2

Strain at Failure (%): 3.0

Undrained Shear Strength (kPa): 44.1

Water Content (%): 40.3

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

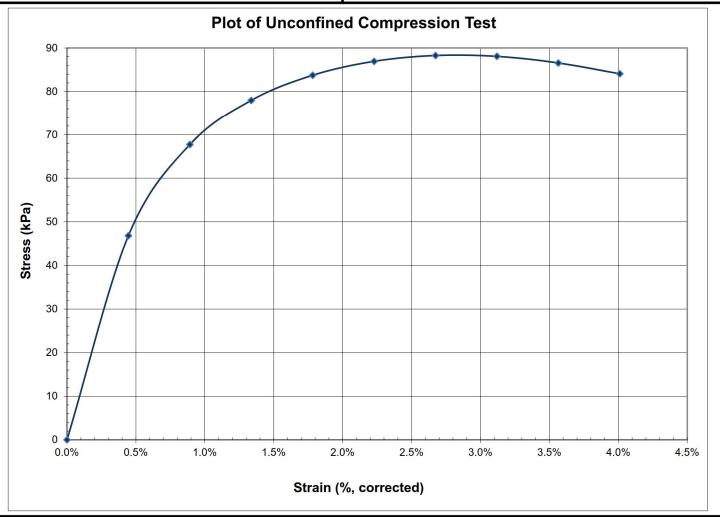
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-005 Sample #: 005-04

Source:

Visual Description of Sample: (CH) silty CLAY, brown, cohesive, w>PL, firm.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): 88.3

Strain at Failure (%): 2.7

Undrained Shear Strength (kPa): 44.1

Water Content (%): <u>45.3</u>

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

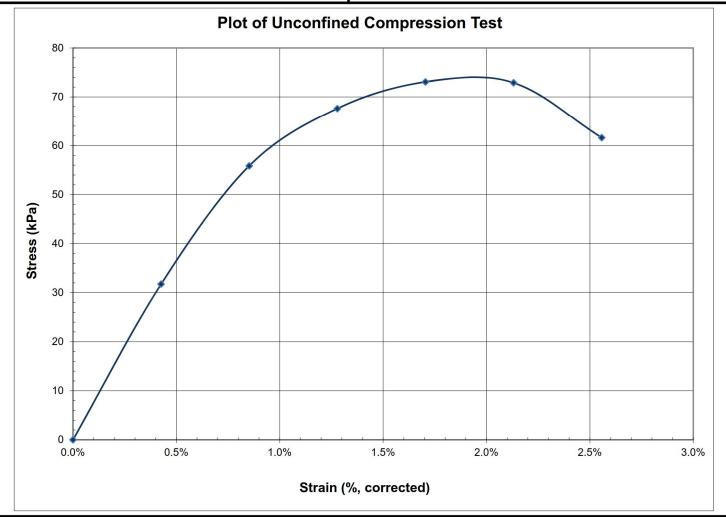
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-005 Sample #: 005-08

Source:

Visual Description of Sample: (CH) silty CLAY, brown, cohesive, w>PL, firm.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 73.1

Strain at Failure (%): 1.7
Undrained Shear Strength (kPa): 36.5

Water Content (%): 48.3

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

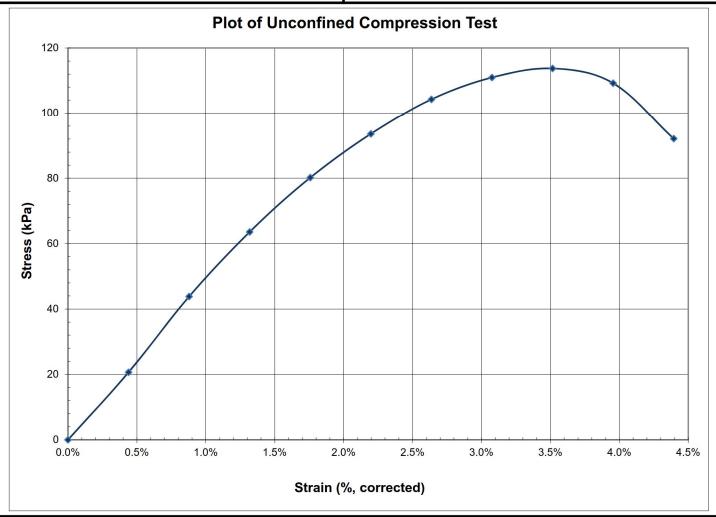
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-005 Sample #: 005-12

Source:

Visual Description of Sample: (CH) silty CLAY, grey, cohesive, w>PL, soft.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): 113.7

Strain at Failure (%):

Undrained Shear Strength (kPa): 56.9

> Water Content (%): 49.7

Compressive Stress at 15% Strain (kPa): N/A Undrained Shear Strength (kPa): N/A Water Content (%): N/A

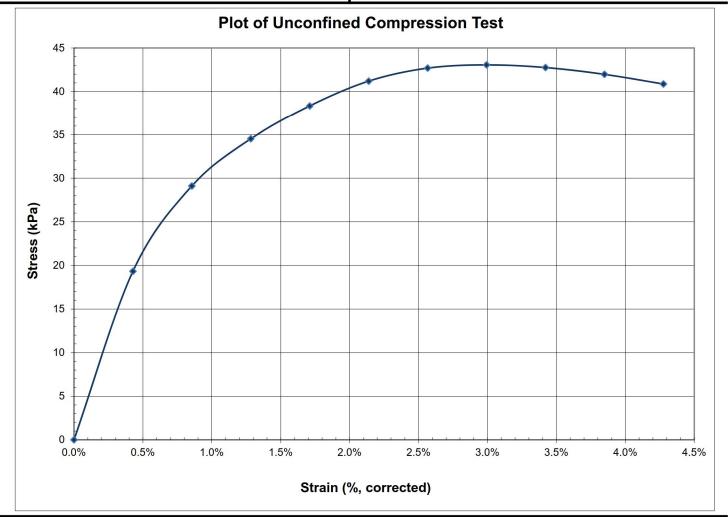
Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-005 Sample #: 005-16


Source:

Visual Description of Sample: (CI) SILTY CLAY, some sand, trace gravel, very light grey, TILL, cohesive, w>PL, soft.

Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 43.1
Strain at Failure (%): 3.0
Undrained Shear Strength (kPa): 21.5
Water Content (%): 52.5

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

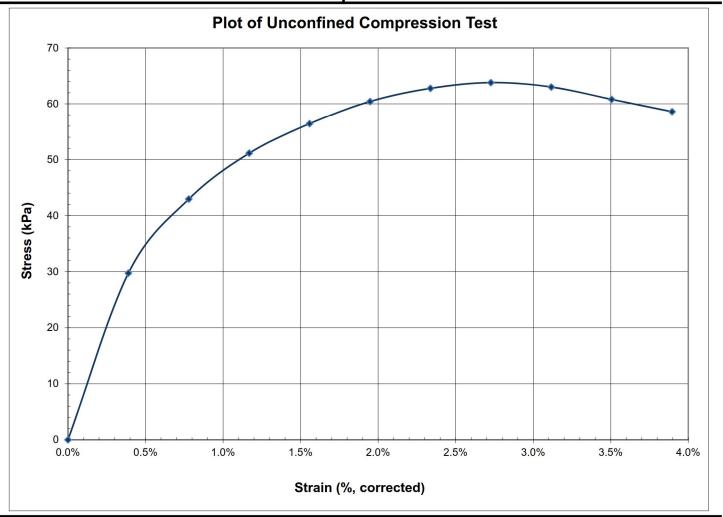
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-006 Sample #: 006-04

Source:

Visual Description of Sample: (CH) CLAY, trace silt nodules, brown, oxidation staining, cohesive, w>PL, firm to soft.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 63.8
Strain at Failure (%): 2.7

Undrained Shear Strength (kPa): 31.9

Water Content (%): 55.8

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

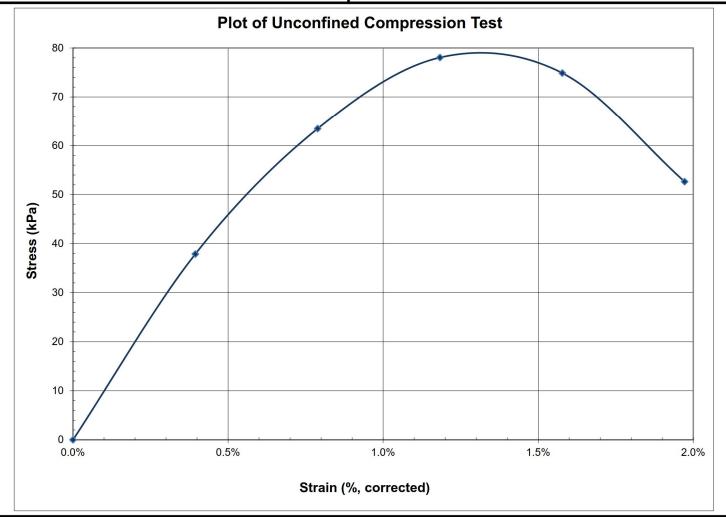
Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-006 Sample #: 006-08

Source:


Visual Description of Sample: (CH) CLAY, trace silt nodules, brown, oxidation staining, cohesive, w>PL, firm to soft.

Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 78.0
Strain at Failure (%): 1.2
Undrained Shear Strength (kPa): 39.0

Water Content (%): 49.0

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

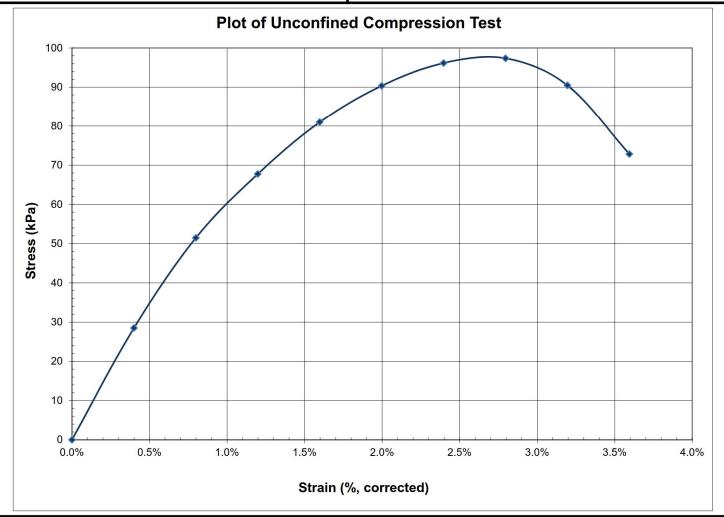
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-006 Sample #: 006-12

Source:

Visual Description of Sample: (CH) CLAY, some silt nodules, grey, oxidation staining, cohesive, w>PL, soft.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 97.4

Strain at Failure (%): 2.8
Undrained Shear Strength (kPa): 48.7

Water Content (%): 52.0

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

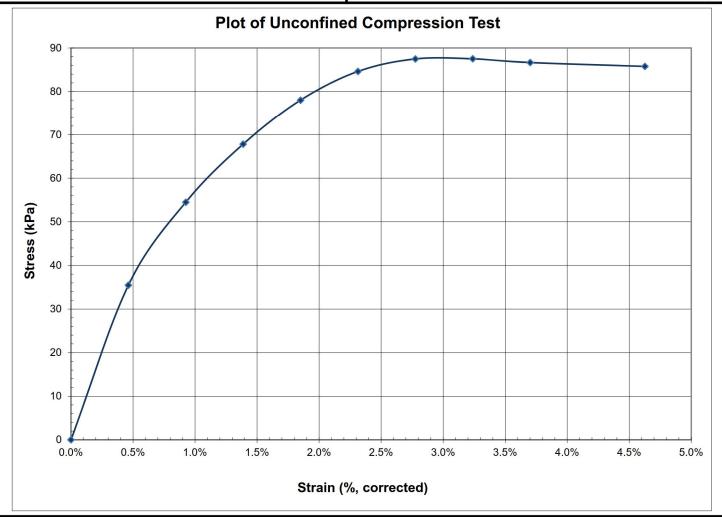
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-006 Sample #: 006-16

Source:

Visual Description of Sample: (CH) CLAY and sandy SILT, light grey, cohesive, w>PL, soft.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): 87.5

Strain at Failure (%): 3.2

Undrained Shear Strength (kPa): 43.8

Water Content (%): 54.3

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

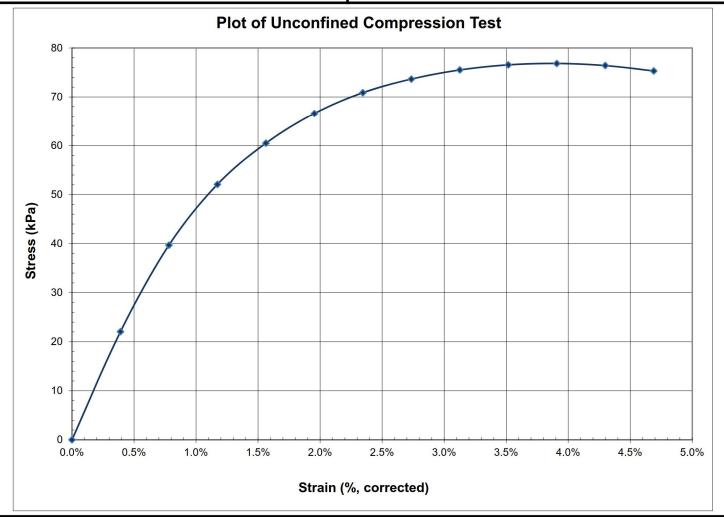
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-007 Sample #: 007-07

Source:

Visual Description of Sample: (CH) silty CLAY, brown, cohesive, w~PL, firm.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): 76.8

Strain at Failure (%): 3.9

Undrained Shear Strength (kPa): 38.4

Water Content (%): 54.7

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

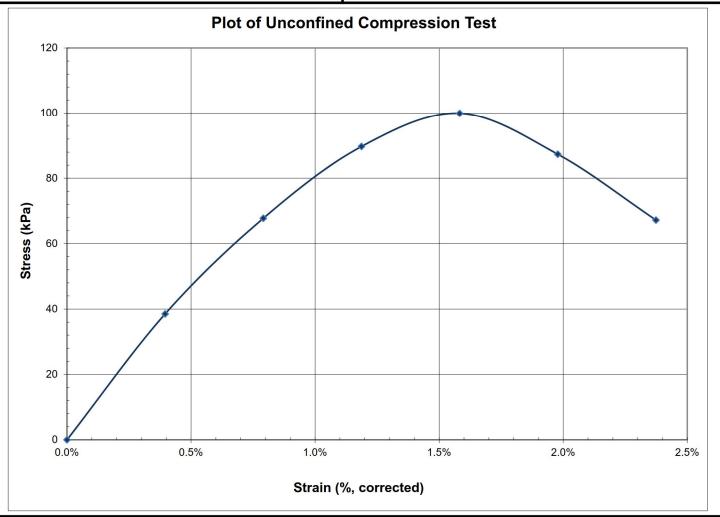
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-007 Sample #: 007-11

Source:

Visual Description of Sample: (CH) silty CLAY, grey, cohesive, w~PL, firm.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 99.9
Strain at Failure (%): 1.6

Undrained Shear Strength (kPa): 50.0

Water Content (%): 50.6

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

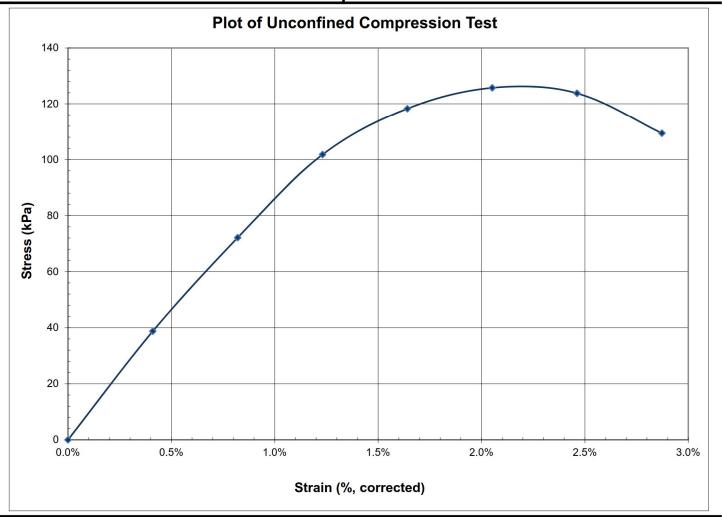
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

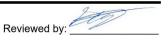
Borehole #: TH-15-007 Sample #: 007-15

Source:

Visual Description of Sample: (CH) silty CLAY, grey, cohesive, w~PL, firm.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 125.8
Strain at Failure (%): 2.1


Undrained Shear Strength (kPa): 62.9

Water Content (%): 53.4

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

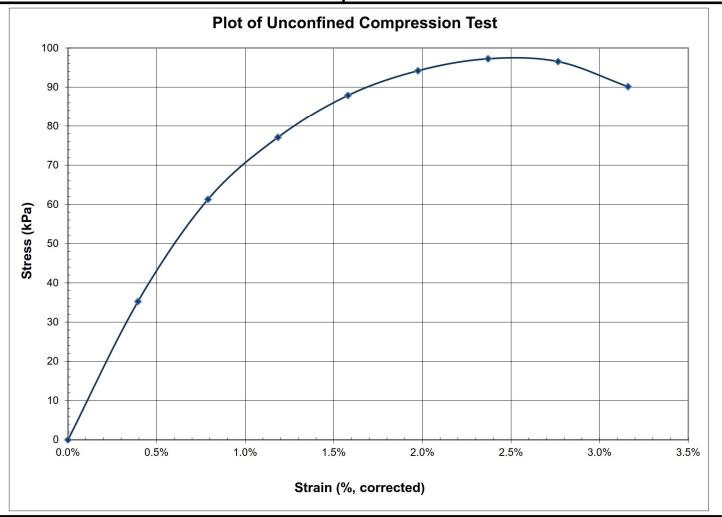
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-007 Sample #: 007-19

Source:

Visual Description of Sample: (CH) silty CLAY, grey, cohesive, w~PL, firm.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 97.2
Strain at Failure (%): 2.4

Undrained Shear Strength (kPa): 48.6

Water Content (%): 35.9

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Phase: 2000 1537312 Project #:

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Date: November 23, 2015 Tested by: B.K.

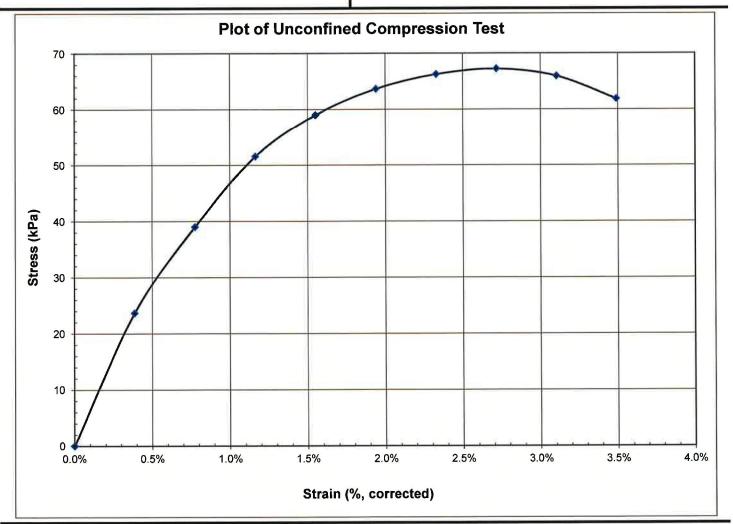
Borehole #: TH-15-008

Sample #: 008-06

Source:

Visual Description of Sample: (CH) silty CLAY, brown-grey, cohesive, w~PL, firm.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): ____

Strain at Failure (%):

Undrained Shear Strength (kPa): 33.6

> Water Content (%): 52.0

Compressive Stress at 15% Strain (kPa): N/A Undrained Shear Strength (kPa): N/A Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

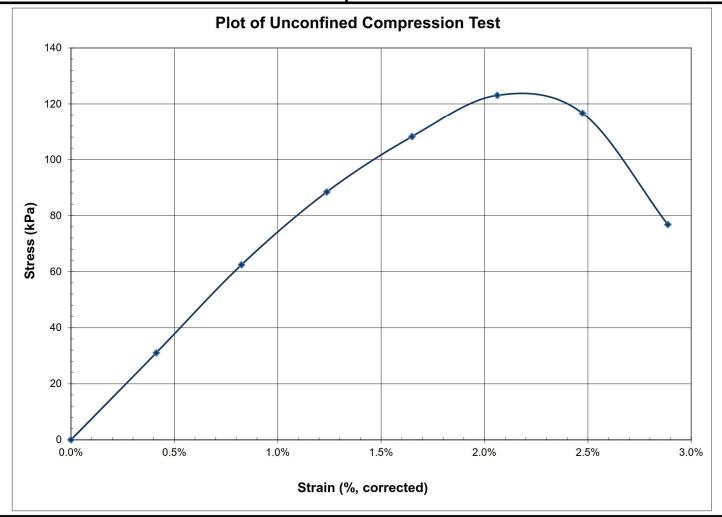
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-008 Sample #: 008-10

Source:

Visual Description of Sample: (CH) silty CLAY, brown-grey, cohesive, w~PL, very soft.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 123.1

Strain at Failure (%): 2.1
Undrained Shear Strength (kPa): 61.5

Water Content (%): 48.2

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

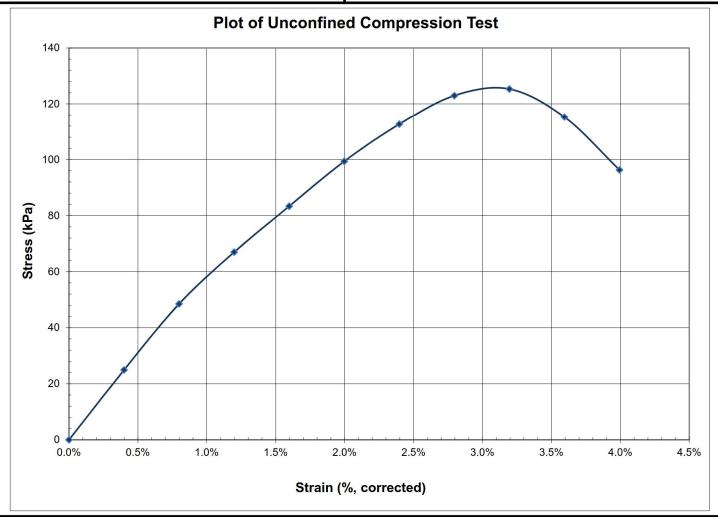
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-008 Sample #: 008-14

Source:

Visual Description of Sample: (CH) silty CLAY, brown-grey, cohesive, w~PL, firm.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): 125.3

Strain at Failure (%): 3.2

Undrained Shear Strength (kPa): 62.7

Water Content (%): ______46.3

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

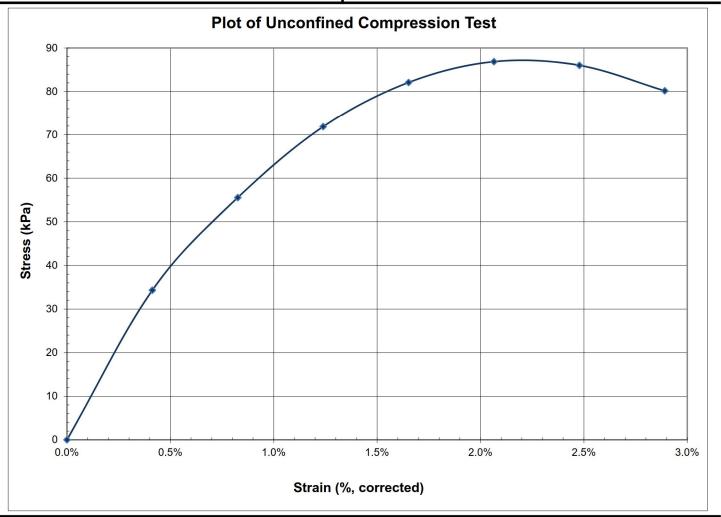
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-008 Sample #: 008-18

Source:

Visual Description of Sample: (CH) silty CLAY, brown-grey, cohesive, w~PL, very soft.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 86.9
Strain at Failure (%): 2.1

Undrained Shear Strength (kPa): 43.4

Water Content (%): <u>45.3</u>

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

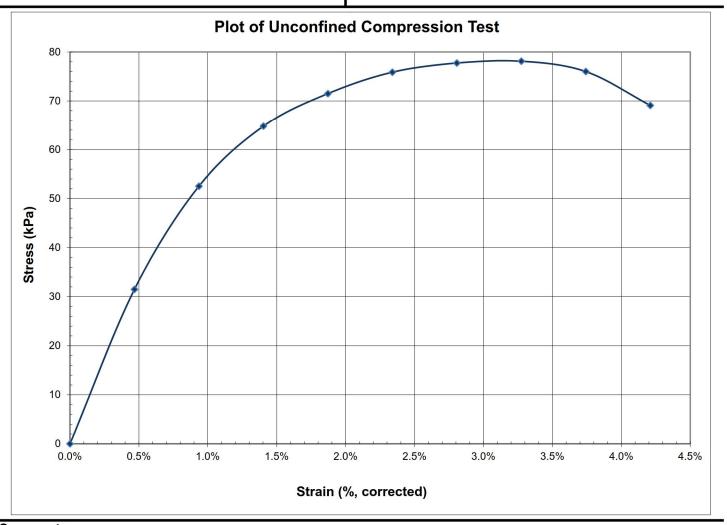
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

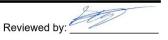
Borehole #: TH-15-009 Sample #: 009-05

Source:

Visual Description of Sample: (CI) SILTY CLAY, trace sand and gravel, mottled brown-grey, FILL, cohesive, w~PL, firm.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 78.1
Strain at Failure (%): 3.3


Undrained Shear Strength (kPa): 39.1

Water Content (%): _____44.3

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

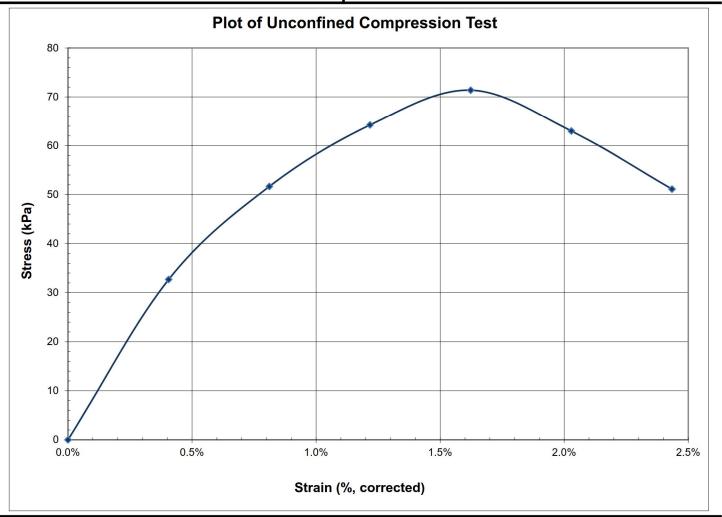
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-009 Sample #: 009-09

Source:

Visual Description of Sample: (CH) silty CLAY, grey-brown, cohesive, w~PL, soft.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 71.4
Strain at Failure (%): 1.6


Strain at Failure (%): 1.6
Undrained Shear Strength (kPa): 35.7

Water Content (%): 56.1

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

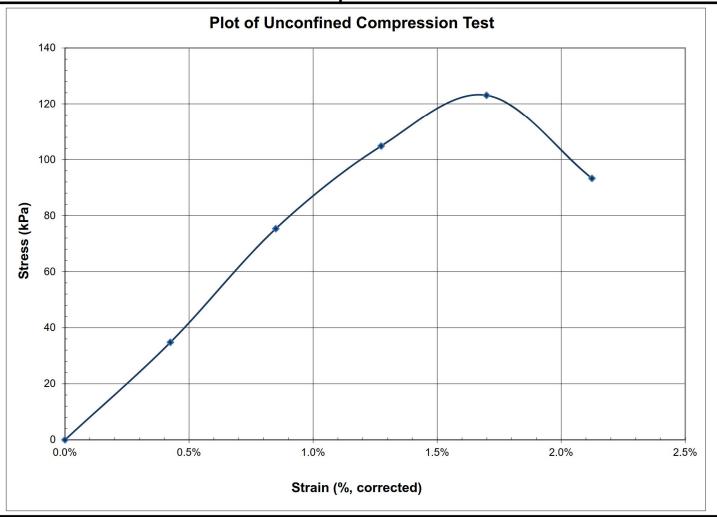
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-009 Sample #: 009-13

Source:

Visual Description of Sample: (CH) silty CLAY, grey-brown, cohesive, w~PL, soft.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 123.1
Strain at Failure (%): 1.7

Undrained Shear Strength (kPa): 61.5

Water Content (%): ______48.6

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

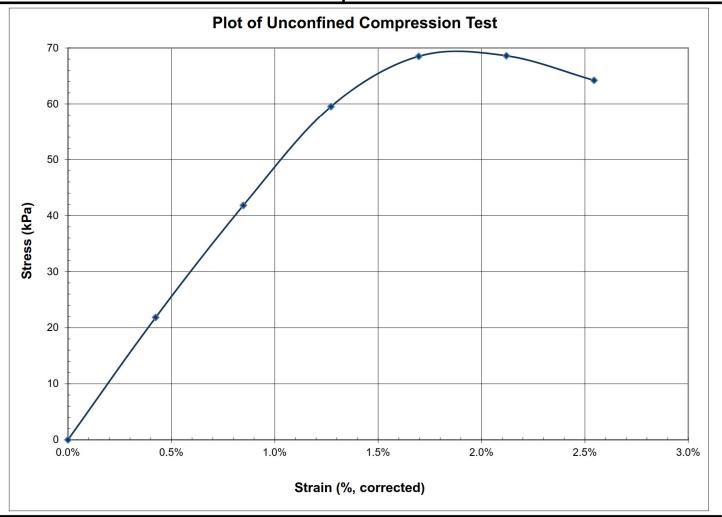
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-009 Sample #: 009-17

Source:

Visual Description of Sample: (CH) silty CLAY, grey, cohesive, w~PL, soft.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 68.6
Strain at Failure (%): 2.1

Undrained Shear Strength (kPa): 34.3

Water Content (%): <u>47.3</u>

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

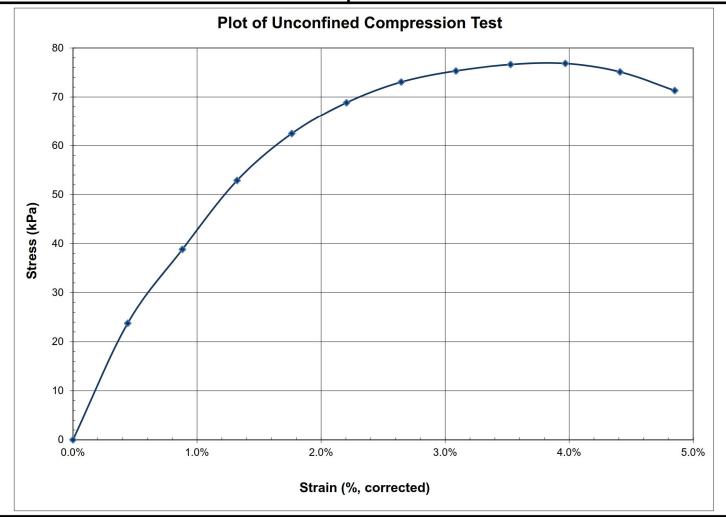
Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-010 Sample #: 010-04


Source:

Visual Description of Sample:(CI) SILTY CLAY, some organics, trace sand and gravel, brown to grey, cohesive w~PL, stiff.

Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 76.8
Strain at Failure (%): 4.0
Undrained Shear Strength (kPa): 38.4
Water Content (%): 53.0

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-010 Sample #: 010-08

Source:

Visual Description of Sample: (CH) silty CLAY, brown, cohesive, w~PL, firm.

Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): _____114.1

Strain at Failure (%): 2.3

Undrained Shear Strength (kPa): 57.1

Water Content (%): 53.8

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

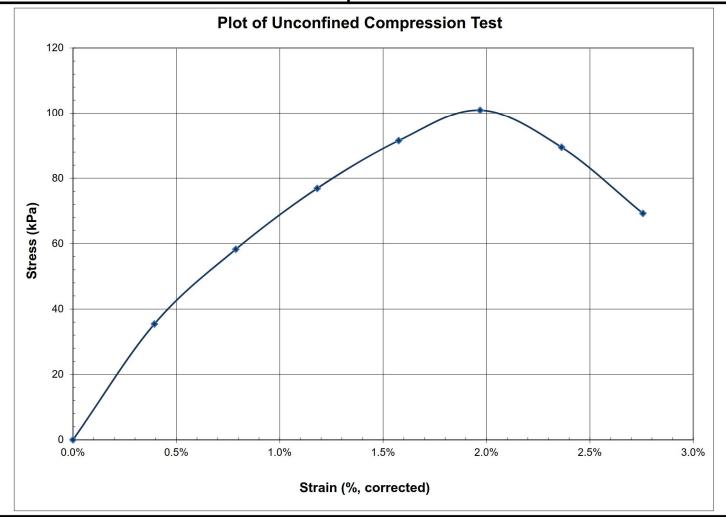
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-010 Sample #: 010-12

Source:

Visual Description of Sample: (CH) silty CLAY, grey, cohesive, w~PL, firm.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): _____100.9

Strain at Failure (%): 2.0

Undrained Shear Strength (kPa): 50.5

Water Content (%): 50.7

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

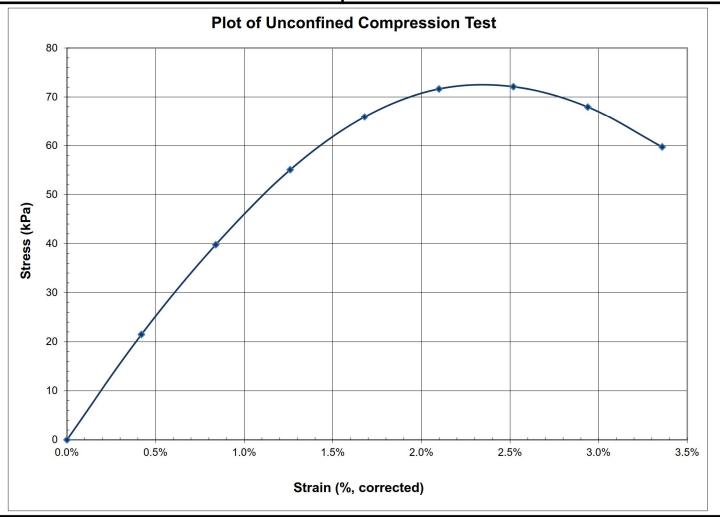
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-010 Sample #: 010-16

Source:

Visual Description of Sample: (CH) silty CLAY, brown, cohesive, w~PL, firm.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): 72.1

Strain at Failure (%): 2.5

Undrained Shear Strength (kPa): 36.0

Water Content (%): 62.9

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

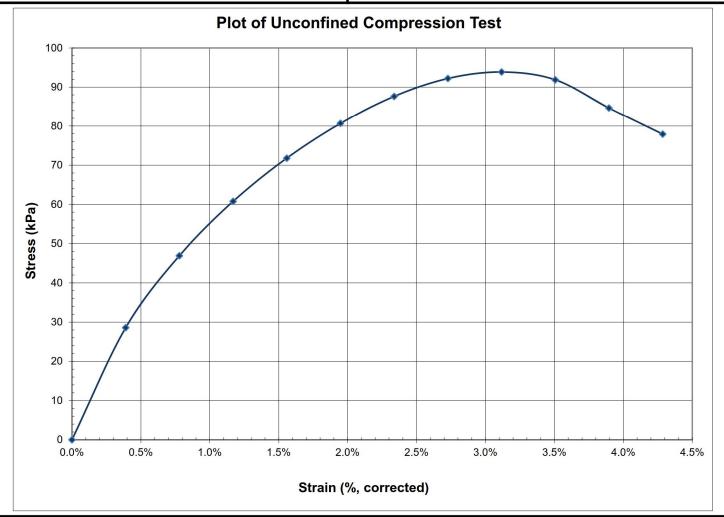
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-011 Sample #: 011-05

Source:

Visual Description of Sample: (CH) CLAY, some silt nodules, grey, cohesive, w>PL, soft.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 93.9

Strain at Failure (%): 3.1
Undrained Shear Strength (kPa): 46.9

Water Content (%): 52.0

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

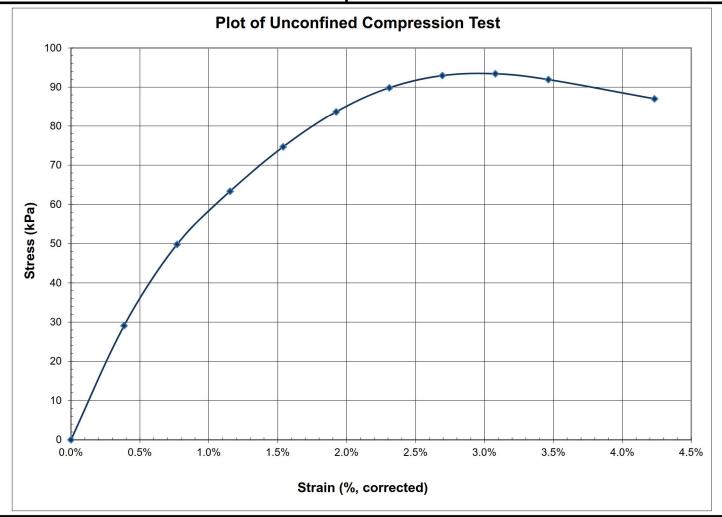
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-011 Sample #: 011-09

Source:

Visual Description of Sample: (CH) CLAY, some silt nodules, grey, cohesive w>PL, soft.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): 93.4

Strain at Failure (%): 3.1

Undrained Shear Strength (kPa): 46.7

Water Content (%): 58.3

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

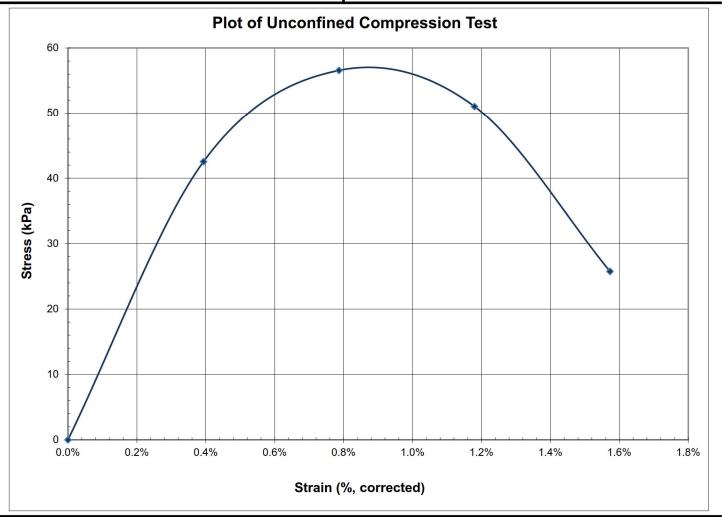
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-012 Sample #: 012-07

Source:

Visual Description of Sample: (CH) silty CLAY, brown, cohesive, w~PL, soft.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): 56.6

Strain at Failure (%): 0.8

Undrained Shear Strength (kPa): 28.3

Water Content (%): _____49.6

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

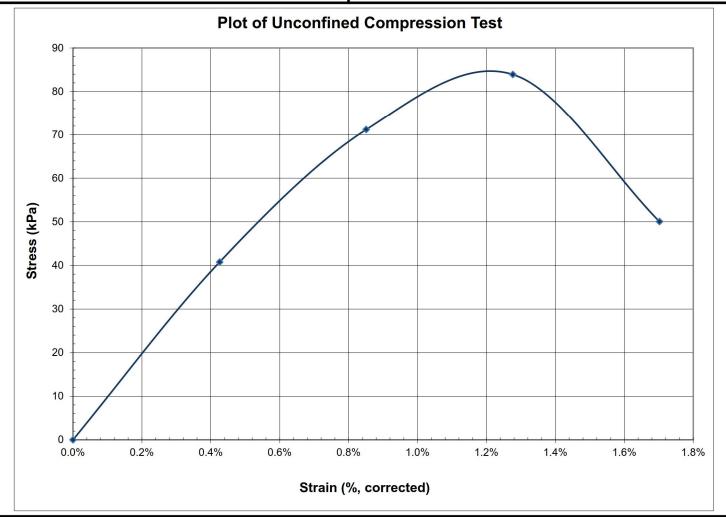
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-012 Sample #: 012-09

Source:

Visual Description of Sample: (CH) silty CLAY, mottled grey-brown, cohesive, w~PL, soft.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): 83.9

Strain at Failure (%): 1.3

Undrained Shear Strength (kPa): 42.0

Water Content (%): 49.0

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

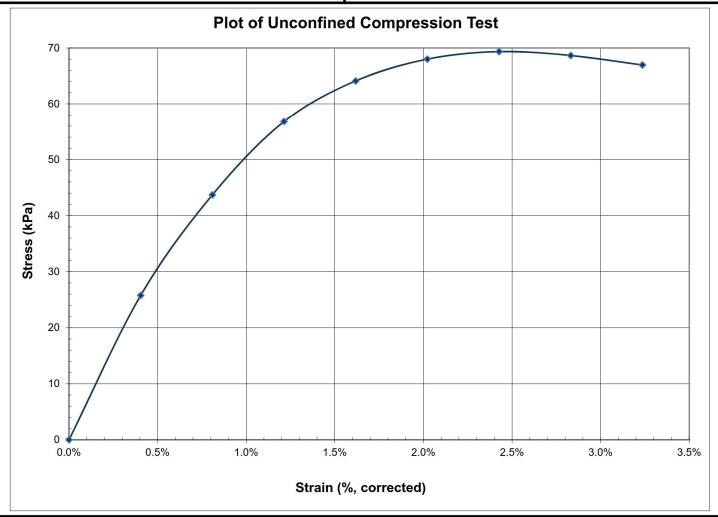
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-012 Sample #: 012-13

Source:

Visual Description of Sample: (CH) silty CLAY, brown, cohesive, w~PL, soft.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 69.3

Strain at Failure (%): 2.4
Undrained Shear Strength (kPa): 34.7

Water Content (%): 44.6

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

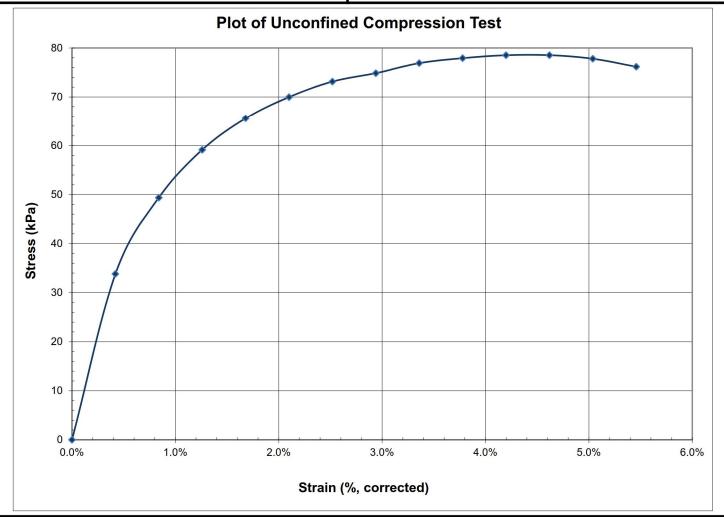
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-013 Sample #: 013-05

Source:

Visual Description of Sample: (CH) silty CLAY, brown, cohesive, w~PL, soft.


Date Sample Received: November 5, 2015

Compressive Stress at Failure (kPa): 78.5

Strain at Failure (%): 4.6
Undrained Shear Strength (kPa): 39.3

Water Content (%): 58.7

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

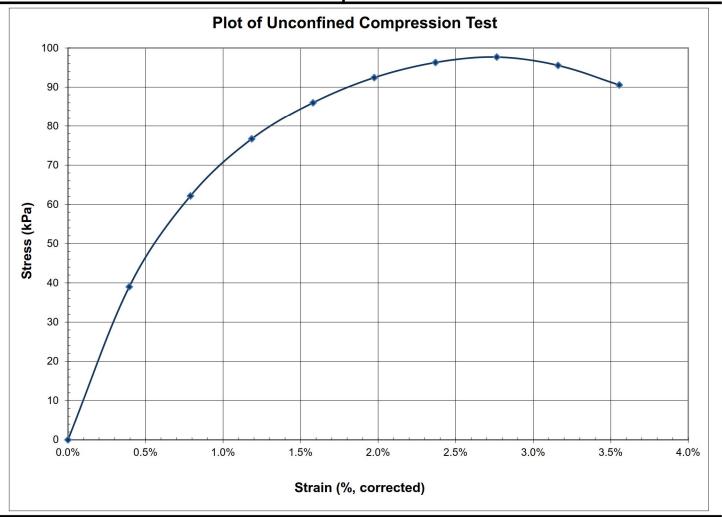
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-013 Sample #: 013-07

Source:

Visual Description of Sample: (CH) silty CLAY, brown, cohesive, w~PL, soft.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): 97.7

Strain at Failure (%): 2.8

Undrained Shear Strength (kPa): 48.8

Water Content (%): 52.3

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

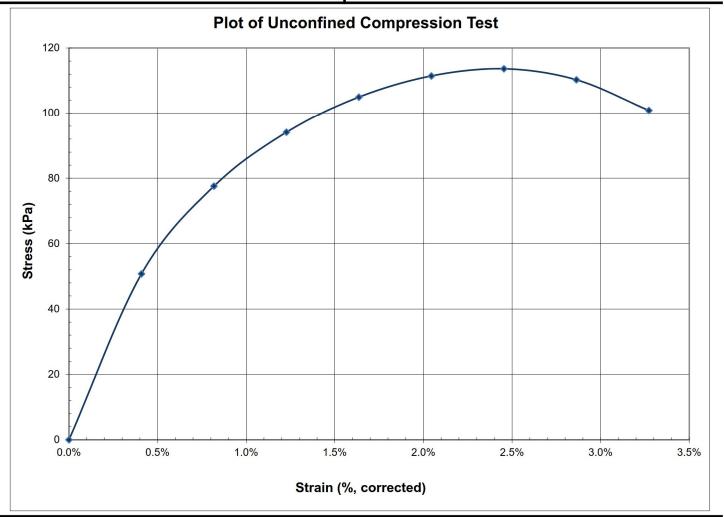
Tested by: B.K. Date: November 23, 2015

Borehole #: TH-15-013 Sample #: 013-09

Source:

Visual Description of Sample: (CH) silty CLAY, brown, cohesive, w~PL, soft.

Date Sample Received: November 5, 2015


Compressive Stress at Failure (kPa): 113.6

Strain at Failure (%): 2.5

Undrained Shear Strength (kPa): 56.8

Water Content (%): 49.9

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

Project #: 1537312 Phase: 2000

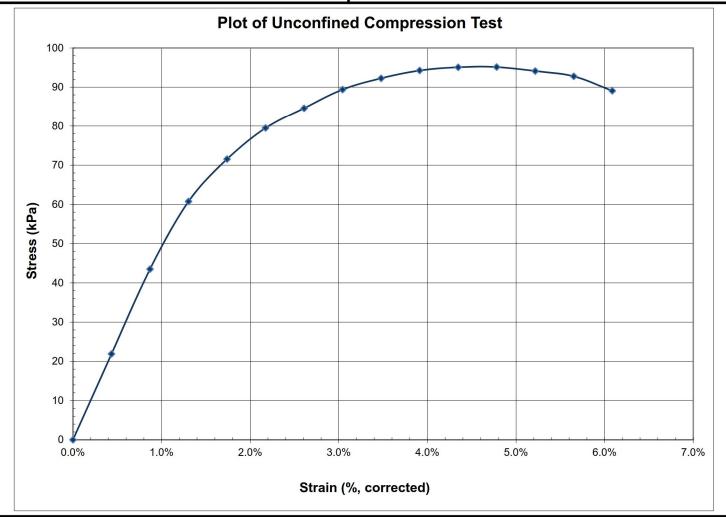
Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: S.H. Date: October 28, 2015

51.1

Sample #: 014-06 Borehole #: TH-15-014

Source:


Visual Description of Sample: (CH) CLAY, high plastic, brown, cohesive, w>PL, firm to soft.

Date Sample Received: October 25, 2015

Compressive Stress at Failure (kPa): 95.1 Strain at Failure (%): 4.8 Undrained Shear Strength (kPa): 47.6

Water Content (%):

Compressive Stress at 15% Strain (kPa): N/A Undrained Shear Strength (kPa): N/A Water Content (%): N/A

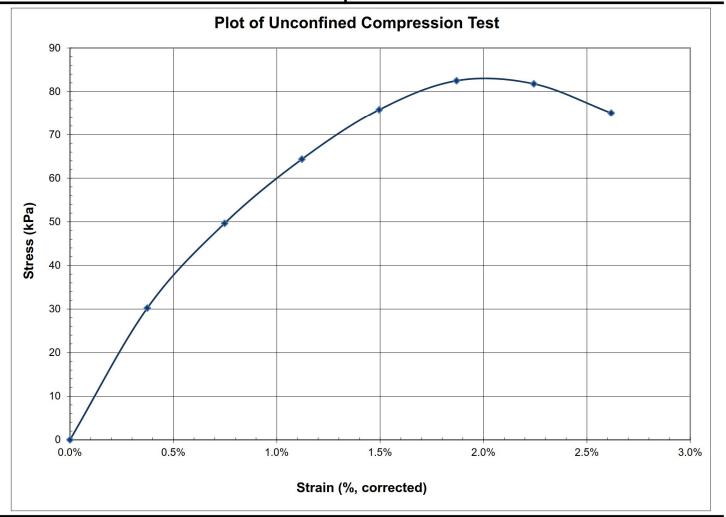
Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: S.H. Date: October 28, 2015

Borehole #: TH-15-014 Sample #: 014-11


Source:

Visual Description of Sample: (CH) CLAY, high plastic, grey, white nodules, oxidation staining, cohesive, w>PL, soft.

Date Sample Received: October 25, 2015

Compressive Stress at Failure (kPa): 82.5
Strain at Failure (%): 1.9
Undrained Shear Strength (kPa): 41.2
Water Content (%): 52.0

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

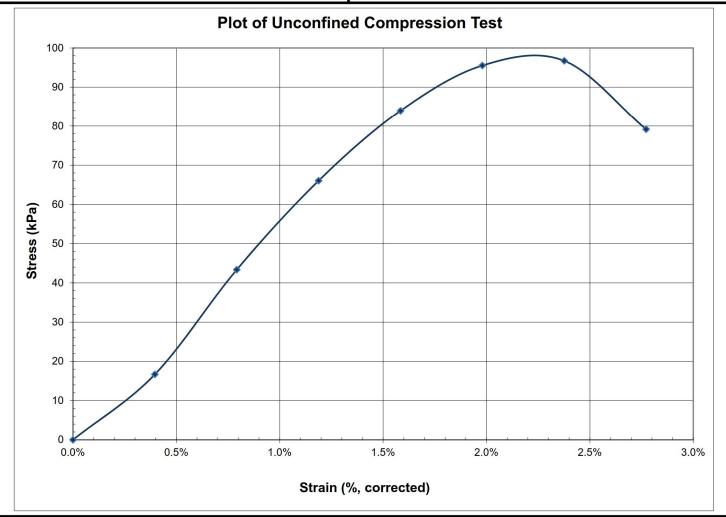
Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: S.H. Date: October 28, 2015

Borehole #: TH-15-014 Sample #: 014-15


Source:

Visual Description of Sample: (CH) CLAY, high plastic, grey, white nodules, oxidation staining, cohesive, w>PL, soft.

Date Sample Received: October 25, 2015

Compressive Stress at Failure (kPa): 96.7
Strain at Failure (%): 2.4
Undrained Shear Strength (kPa): 48.4
Water Content (%): 56.2

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

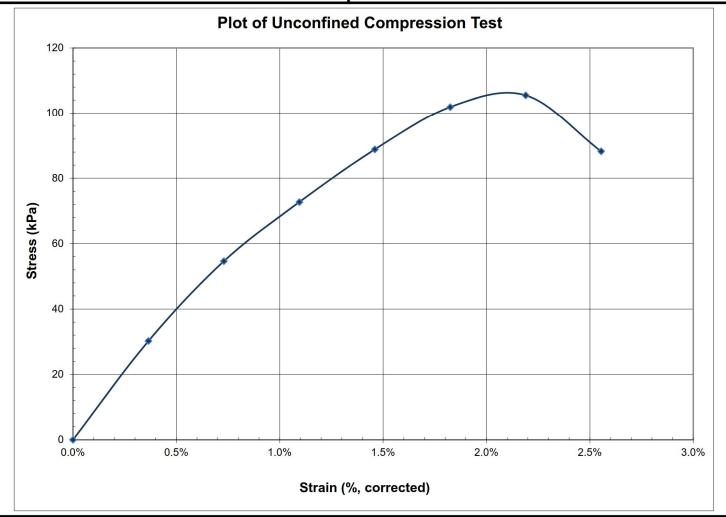
Comments:

Project #: 1537312 Phase: 2000

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested by: S.H. Date: October 28, 2015

Borehole #: TH-15-014 Sample #: 014-21


Source:

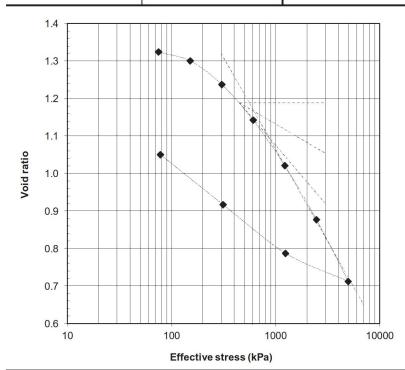
Visual Description of Sample: (CH) CLAY, high plastic, grey, white nodules, oxidation staining, cohesive, w>PL, soft.

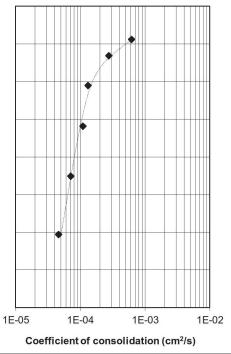
Date Sample Received: October 25, 2015

Compressive Stress at Failure (kPa): 105.5
Strain at Failure (%): 2.2
Undrained Shear Strength (kPa): 52.7
Water Content (%): 60.2

Compressive Stress at 15% Strain (kPa): N/A
Undrained Shear Strength (kPa): N/A
Water Content (%): N/A

Comments:

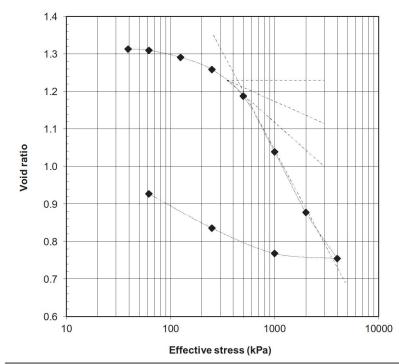

Project #: 1537312 Phase: 2000

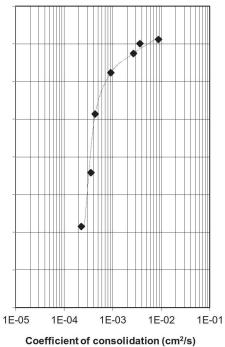

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested By: B.Y. Date: December 14, 2015

Sample: TH-15-002 002-06 3.05-3.66 m depth

Test Results	s:			Sample Data:		
Void F	Ratio	Coeffi	cient of	Specific gravity:	2.75	(assumed)
versus	Stress	Conso	lidation	Diameter:	63.7	mm
		Average		Initial height:	25.3	mm
Effective	Void	Void		Initial water content:	47.0	% (prior to saturation)
Stress	Ratio	Ratio	Cv	Initial dry density:	1183	kg/m ³ (prior to loading)
(kPa)			(cm ² /s)	Initial void ratio:	1.32	(prior to loading)
75	1.32			Final water content:	42.1	%
152	1.30	1.31	6.2E-04	Final dry density:	1344	kg/m ³
304	1.24	1.27	2.8E-04	Estimated Preconsolida	ation Pres	sure: 600 kPa
609	1.14	1.19	1.3E-04			
1228	1.02	1.08	1.1E-04	Comments:		
2475	0.88	0.95	7.1E-05			
5000	0.71	0.79	4.6E-05			
1250	0.79					
313	0.92					
78	1.05					

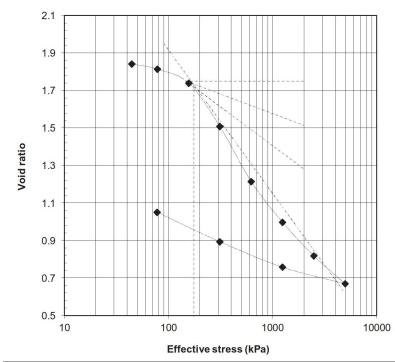

1537312 Project #: Phase: 2000

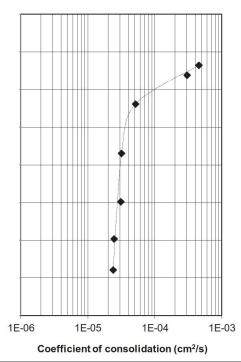

Short Title: Dillon / BRT II Geotechnical Investigation / Winnipeg, MB

Tested By: D.B. Date: November 30, 2015

TH-15-006 006-08 6.10-6.71 m depth Sample:

Test Results	s <i>:</i>			Sample Data:				
Void F	Ratio	Coeffi	cient of	Specific gravity:	2.75	(assumed)		
versus \$	Stress Consolidation		Diameter:	64.2	mm			
		Average		Initial height:	24.6	mm		
Effective	Void	Void		Initial water content:	47.9	% (prior to sa	aturation))
Stress	Ratio	Ratio	Cv	Initial dry density:	1189	kg/m ³ (prior t	to loadin	g)
(kPa)			(cm ² /s)	Initial void ratio:	1.31	(prior to load	ing)	
39	1.31			Final water content:	35.7	%		
62	1.31	1.31	8.7E-03	Final dry density:	1428	kg/m ³		
125	1.29	1.30	3.6E-03	Estimated Preconsolida	tion Pres	sure:	500	kPa
250	1.26	1.27	2.7E-03					
500	1.19	1.22	9.2E-04	Comments:				_
1000	1.04	1.11	4.3E-04					
2000	0.88	0.96	3.5E-04					
4000	0.75	0.82	2.3E-04					
1000	0.77							
250	0.84							
62	0.93							

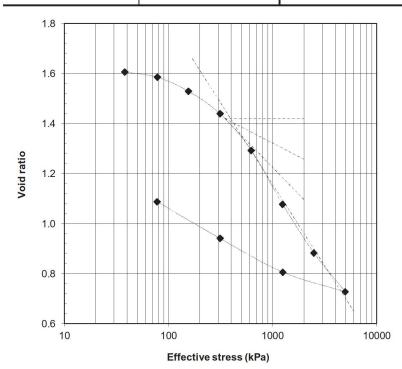

Project #: 1537312 Phase: 2000

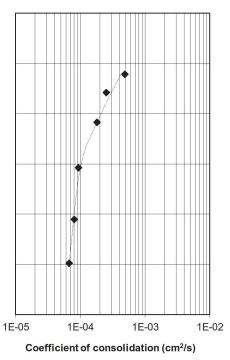

Short Title: Dillon / BRT II Geotechnical Investigation / Winnipeg, MB

Tested By: B.Y. / D.B. Date: December 9, 2015

Sample: TH-15-006 006-16 12.19-12.80 m depth

Test Results	s:			Sample Data:		
Void F	Ratio	Coeffi	cient of	Specific gravity:	2.75	(assumed)
versus			Diameter:	63.9	mm	
		Average		Initial height:	25.0	mm
Effective	Void	Void		Initial water content:	67.3	% (prior to saturation)
Stress	Ratio	Ratio	Cv	Initial dry density:	968	kg/m ³ (prior to loading)
(kPa)			(cm ² /s)	Initial void ratio:	1.84	(prior to loading)
45	1.84			Final water content:	42.1	%
78	1.81	1.83	4.5E-04	Final dry density:	1343	kg/m ³
156	1.74	1.78	3.0E-04	Estimated Preconsolida	tion Pres	sure: 175 kPa
312	1.51	1.62	5.1E-05			
624	1.21	1.36	3.2E-05	Comments:		
1249	1.00	1.10	3.1E-05			
2500	0.82	0.91	2.5E-05			
5000	0.67	0.74	2.4E-05			
1250	0.76					
312	0.89					
78	1.05					

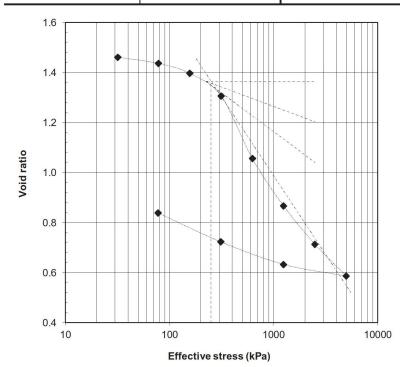

Project #: 1537312 Phase: 2000


Short Title: Dillon / BRT II Geotechnical Investigation / Winnipeg, MB

Tested By: B.Y. / D.B. Date: November 26, 2015

Sample: TH-15-009 009-09 6.10-6.71 m depth

Test Results	s <i>:</i>			Sample Data:		
Void F	Ratio	Coeffi	cient of	Specific gravity:	2.75	(assumed)
versus	Stress	ss Consolidation		Diameter:	64.1	mm
		Average		Initial height:	25.0	mm
Effective	Void	Void		Initial water content:	57.4	% (prior to saturation)
Stress	Ratio	Ratio	Cv	Initial dry density:	1055	kg/m ³ (prior to loading)
(kPa)			(cm ² /s)	Initial void ratio:	1.61	(prior to loading)
38	1.61			Final water content:	41.0	%
78	1.58			Final dry density:	1314	kg/m ³
156	1.53	1.56	4.9E-04	Estimated Preconsolida	ation Pres	sure: 400 kPa
313	1.44	1.48	2.5E-04			
624	1.29	1.37	1.8E-04	Comments:		
1249	1.08	1.18	9.4E-05			
2500	0.88	0.98	8.1E-05			
5000	0.73	0.80	6.7E-05			
1251	0.81					
313	0.94					
78	1.09					

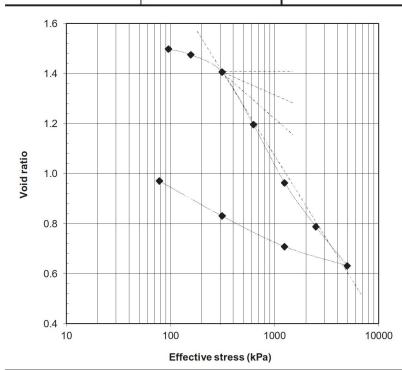

Project #: 1537312 Phase: 2000

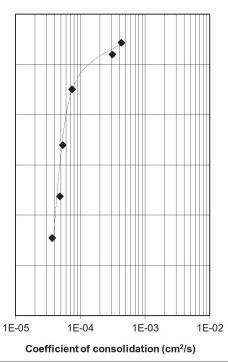

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested By: B.Y. Date: December 3, 2015

Sample: TH-15-009 009-17 12.19-12.80 m depth

Test Results	s <i>:</i>			Sample Data:		
Void F	Ratio	Coeffi	cient of	Specific gravity:	2.75	(assumed)
versus	Stress	Conso	lidation	Diameter:	63.9	mm
		Average		Initial height:	25.9	mm
Effective	Void	Void		Initial water content:	51.8	% (prior to saturation)
Stress	Ratio	Ratio	Cv	Initial dry density:	1117	kg/m ³ (prior to loading)
(kPa)			(cm ² /s)	Initial void ratio:	1.46	(prior to loading)
32	1.46			Final water content:	32.1	%
78	1.44	1.45	1.1E-03	Final dry density:	1498	kg/m ³
156	1.40	1.42	6.6E-04	Estimated Preconsolida	ation Pres	sure: 250 kPa
313	1.31	1.35	2.5E-04			
626	1.06	1.18	7.2E-05	Comments:		
1250	0.87	0.96	7.7E-05			
2498	0.71	0.79	6.9E-05			
5001	0.59	0.65	5.8E-05			
1250	0.63					
311	0.72					
78	0.84					

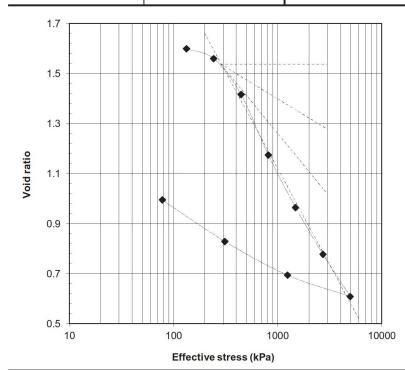

Project #: 1537312 Phase: 2000

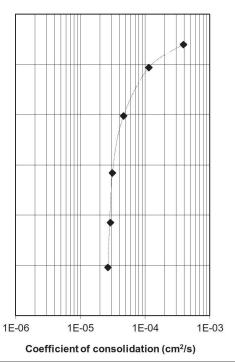

Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested By: B.Y. / D.B. Date: December 14, 2015

Sample: TH-15-014 014-15 9.14-9.75 m depth

Test Results	s <i>:</i>			Sample Data:		
Void F	Ratio	Coeffi	cient of	Specific gravity:	2.75	(assumed)
versus \$			Diameter:	63.8	mm	
		Average		Initial height:	25.2	mm
Effective	Void	Void		Initial water content:	54.9	% (prior to saturation)
Stress	Ratio	Ratio	Cv	Initial dry density:	1101	kg/m ³ (prior to loading)
(kPa)			(cm ² /s)	Initial void ratio:	1.50	(prior to loading)
95	1.50			Final water content:	38.2	%
156	1.48	1.49	4.3E-04	Final dry density:	1398	kg/m ³
313	1.41	1.44	3.1E-04	Estimated Preconsolida	tion Pres	sure: 300 kPa
625	1.20	1.30	7.5E-05			
1250	0.96	1.08	5.3E-05	Comments:		
2500	0.79	0.87	4.8E-05			
5000	0.63	0.71	3.7E-05			
1250	0.71					
312	0.83					
78	0.97					


Project #: 1537312 Phase: 2000


Short Title: Dillon / BRT Phase II Geotechnical Investigation / Winnipeg, MB

Tested By: B.Y. Date: December 14, 2015

Sample: TH-15-014 014-011 6.25-6.71 m depth

Test Results	s <i>:</i>			Sample Data:		
Void F	Ratio	Coeffi	cient of	Specific gravity:	2.75	(assumed)
versus	Stress	Conso	lidation	Diameter:	63.9	mm
		Average		Initial height:	25.0	mm
Effective	Void	Void		Initial water content:	57.3	% (prior to saturation)
Stress	Ratio	Ratio	Cv	Initial dry density:	1058	kg/m ³ (prior to loading)
(kPa)			(cm ² /s)	Initial void ratio:	1.60	(prior to loading)
133	1.60			Final water content:	41.9	%
244	1.56	1.58	3.9E-04	Final dry density:	1382	kg/m ³
445	1.42	1.49	1.1E-04	Estimated Preconsolida	tion Pres	sure: 300 kPa
815	1.17	1.29	4.6E-05			
1491	0.96	1.07	3.1E-05	Comments:		
2731	0.78	0.87	2.9E-05			
5001	0.61	0.69	2.7E-05			
1249	0.69					
312	0.83					
78	0.99					

Golder Associates Ltd. ATTN: Crystal Rinas 1721 8th Street East Saskatoon SK S7H 0T4 Date Received: 10- NOV- 15

Report Date: 18- NOV- 15 14:53 (MT)

Version: FINAL

Client Phone: 306-665-7989

Certificate of Analysis

Lab Work Order #: L1700580 Project P.O. #: NOT SUBMITTED

Job Reference: 1537312

C of C Numbers: Legal Site Desc:

Brian Morgan, B.Sc. Hons. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: #819- 58th St E., Saskatoon, SK S7K 6X5 Canada | Phone: +1 306 668 8370 | Fax: +1 306 668 8383 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1700580 CONTD.... PAGE 2 of 5 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1700580-1 BH: TH-15-005 SA: 005-013							
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
Water Soluble Sulfate	0.142		0.010	%	18-NOV-15	18-NOV-15	R3313242
Detailed Salinity	0.112		0.010				110010212
Chloride (CI) (Saturated Paste)							
Chloride (CI)	298	DLDS	4.0	mg/L	17-NOV-15	17-NOV-15	R3312896
Detail Salinity in mg/kg							
Chloride (CI)	336	DLDS	4.5	mg/kg		17-NOV-15	
Calcium (Ca)	338	DLDS	28	mg/kg		17-NOV-15	
Magnesium (Mg)	151	DLDS	28	mg/kg		17-NOV-15	
Potassium (K)	43	DLDS	28	mg/kg		17-NOV-15	
Sodium (Na)	292	DLDS	28	mg/kg		17-NOV-15	
Sulfur (as SO4)	1450	DLDS	28	mg/kg		17-NOV-15	
SAR, Cations and SO4 in saturated soil Calcium (Ca)	300	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Potassium (K)	38	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Magnesium (Mg)	134	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Sodium (Na)	259	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
SAR	3.13		0.10	SAR	17-NOV-15	17-NOV-15	R3312609
Sulfur (as SO4)	1280	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Theoretical Gypsum Requirement							
TGR(brine)	<0.10		0.10	t/ha		17-NOV-15	
TGR(sodic)	<0.10		0.10	t/ha		17-NOV-15	
pH and EC (Saturated Paste)							
% Saturation	113		1.0	%	16-NOV-15	17-NOV-15	R3312590
pH in Saturated Paste	7.53		0.10	pH	16-NOV-15	17-NOV-15	R3312590
Conductivity Sat. Paste	3.25		0.10	dS m-1	16-NOV-15	17-NOV-15	R3312590
L1700580-2 BH: TH-15-006 SA: 006-010							
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
Water Soluble Sulfate	0.117		0.010	%	18-NOV-15	18-NOV-15	R3313242
Detailed Salinity							
Chloride (CI) (Saturated Paste) Chloride (CI)	241	DLDS	10	ma/l	17-NOV-15	17-NOV-15	R3312896
Detail Salinity in mg/kg	24 1	DEDO	10	mg/L	17-1404-15	17-1400-15	13312090
Chloride (CI)	287	DLDS	12	mg/kg		17-NOV-15	
Calcium (Ca)	294	DLDS	30	mg/kg		17-NOV-15	
Magnesium (Mg)	139	DLDS	30	mg/kg		17-NOV-15	
Potassium (K)	30	DLDS	30	mg/kg		17-NOV-15	
Sodium (Na)	283	DLDS	30	mg/kg		17-NOV-15	
Sulfur (as SO4)	1260	DLDS	30	mg/kg		17-NOV-15	
SAR, Cations and SO4 in saturated soil					300 300 AND 10		
Calcium (Ca)	247	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Potassium (K)	25	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Magnesium (Mg)	117	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Sodium (Na)	238	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
SAR Sulfur (26 SOA)	3.12	DLDS	0.10	SAR mg/l	17-NOV-15 17-NOV-15	17-NOV-15	R3312609
Sulfur (as SO4)	1050	טנטט	25	mg/L	17-1100-15	17-NOV-15	R3312609
Theoretical Gypsum Requirement TGR(brine)	<0.10		0.10	t/ha		17-NOV-15	
TGR(sodic)	<0.10		0.10	t/ha		17-NOV-15	
pH and EC (Saturated Paste)	-5.15		2.15				
,							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1700580 CONTD.... PAGE 3 of 5 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1700580-2 BH: TH-15-006 SA: 006-010							
Sampled By: CLIENT							
Matrix: SOIL							
pH and EC (Saturated Paste)							
% Saturation	119		1.0	%	16-NOV-15	17-NOV-15	R3312590
pH in Saturated Paste	7.68		0.10	pН	16-NOV-15	17-NOV-15	R3312590
Conductivity Sat. Paste	2.79		0.10	dS m-1	16-NOV-15	17-NOV-15	R3312590
L1700580-3 BH: TH-15-009 SA: 009-014							
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
Water Soluble Sulfate	0.151		0.010	%	18-NOV-15	18-NOV-15	R3313242
Detailed Salinity							
Chloride (CI) (Saturated Paste)							
Chloride (CI)	618	DLDS	10	mg/L	17-NOV-15	17-NOV-15	R3312896
Detail Salinity in mg/kg		5.5-	700.0				
Chloride (CI)	676	DLDS	11	mg/kg		17-NOV-15	
Calcium (Ca)	422	DLDS	27	mg/kg		17-NOV-15	
Magnesium (Mg)	169	DLDS	27	mg/kg		17-NOV-15	
Potassium (K)	44	DLDS DLDS	27	mg/kg		17-NOV-15 17-NOV-15	
Sodium (Na) Sulfur (as SO4)	394 1390	DLDS	27 27	mg/kg		17-NOV-15	
	1390	DLDS	21	mg/kg		17-NOV-15	
SAR, Cations and SO4 in saturated soil Calcium (Ca)	386	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Potassium (K)	40	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Magnesium (Mg)	154	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Sodium (Na)	360	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
SAR	3.92		0.10	SAR	17-NOV-15	17-NOV-15	R3312609
Sulfur (as SO4)	1270	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Theoretical Gypsum Requirement							
TGR(brine)	<0.10		0.10	t/ha		17-NOV-15	
TGR(sodic)	<0.10		0.10	t/ha		17-NOV-15	
pH and EC (Saturated Paste)							
% Saturation	109		1.0	%	16-NOV-15	17-NOV-15	R3312590
pH in Saturated Paste	7.50		0.10	pH dS m-1	16-NOV-15	17-NOV-15	R3312590
Conductivity Sat. Paste	4.14		0.10	as m-1	16-NOV-15	17-NOV-15	R3312590
L1700580-4 BH: TH-15-011 SA: 011-005							
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters			0.000				
Water Soluble Sulfate	0.130		0.010	%	18-NOV-15	18-NOV-15	R3313242
Detailed Salinity							
Chloride (CI) (Saturated Paste) Chloride (CI)	973	DLDS	10	ma/l	17-NOV-15	17-NOV-15	R3312896
Detail Salinity in mg/kg	313	DLDG	10	mg/L	17-11001-13	17-1100-15	13312090
Chloride (CI)	1010	DLDS	10	mg/kg		17-NOV-15	
Calcium (Ca)	408	DLDS	26	mg/kg		17-NOV-15	
Magnesium (Mg)	157	DLDS	26	mg/kg		17-NOV-15	
Potassium (K)	38	DLDS	26	mg/kg		17-NOV-15	
Sodium (Na)	407	DLDS	26	mg/kg		17-NOV-15	
Sulfur (as SO4)	940	DLDS	26	mg/kg		17-NOV-15	
SAR, Cations and SO4 in saturated soil							
Calcium (Ca)	392	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Potassium (K)	37	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Magnesium (Mg)	151	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1700580 CONTD.... PAGE 4 of 5 Version: FINAL

L1700580-4 BH: TH-15-011 SA: 011-005 Sampled By: CLIENT Matrix: SOIL SAR, Cations and SO4 in saturated soil Sodium (Na) SAR							
Matrix: SOIL SAR, Cations and SO4 in saturated soil Sodium (Na) SAR							
SAR, Cations and SO4 in saturated soil Sodium (Na) SAR							
Sodium (Na) SAR							
SAR							
	391	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
	4.26	DI DO	0.10	SAR	17-NOV-15	17-NOV-15	R3312609
Sulfur (as SO4)	905	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Theoretical Gypsum Requirement TGR(brine)	<0.10		0.10	t/ha		17-NOV-15	
TGR(sodic)	<0.10		0.10	t/ha		17-NOV-15	
pH and EC (Saturated Paste)							
% Saturation	104		1.0	%	16-NOV-15	17-NOV-15	R3312590
pH in Saturated Paste	7.46		0.10	pН	16-NOV-15	17-NOV-15	R3312590
Conductivity Sat. Paste	4.50		0.10	dS m-1	16-NOV-15	17-NOV-15	R3312590
L1700580-5 BH: TH-15-012 SA: 012-008							
Sampled By: CLIENT							
Matrix: SOIL Miscellaneous Parameters							
Water Soluble Sulfate	0.265		0.010	%	18-NOV-15	18-NOV-15	R3313242
Detailed Salinity	0.203		0.010	70	10-110 1-13	10-110 1-13	13313242
Chloride (CI) (Saturated Paste)							
Chloride (CI)	262	DLDS	10	mg/L	17-NOV-15	17-NOV-15	R3312896
Detail Salinity in mg/kg	2012000000		100000				
Chloride (CI)	338	DLDS DLDS	13	mg/kg		17-NOV-15	
Calcium (Ca) Magnesium (Mg)	750 273	DLDS	32 32	mg/kg mg/kg		17-NOV-15 17-NOV-15	
Potassium (K)	40	DLDS	32	mg/kg		17-NOV-15	
Sodium (Na)	334	DLDS	32	mg/kg		17-NOV-15	
Sulfur (as SO4)	2950	DLDS	32	mg/kg		17-NOV-15	
SAR, Cations and SO4 in saturated soil							
Calcium (Ca)	582	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Potassium (K)	31	DLDS DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Magnesium (Mg) Sodium (Na)	212 259	DLDS	25 25	mg/L mg/L	17-NOV-15 17-NOV-15	17-NOV-15 17-NOV-15	R3312609 R3312609
SAR	2.34	BLBG	0.10	SAR	17-NOV-15	17-NOV-15	R3312609
Sulfur (as SO4)	2290	DLDS	25	mg/L	17-NOV-15	17-NOV-15	R3312609
Theoretical Gypsum Requirement					100 - 1		
TGR(brine)	<0.10		0.10	t/ha		17-NOV-15	
TGR(sodic)	<0.10		0.10	t/ha		17-NOV-15	
pH and EC (Saturated Paste) % Saturation	120		1.0	0/	16 NOV 15	17 NOV 15	D2212500
pH in Saturated Paste	129 7.52		1.0 0.10	% pH	16-NOV-15 16-NOV-15	17-NOV-15 17-NOV-15	R3312590 R3312590
Conductivity Sat. Paste	4.32		0.10	dS m-1	16-NOV-15	17-NOV-15	R3312590

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1700580 CONTD....

PAGE 5 of 5 Version: FINAL

Reference Information

Sample Parameter Qualifier Key:

Qualifier Description

DLDS Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

Test Method References:

rest Method Reference	5.						
ALS Test Code	Matrix	Test Description	Method Reference**				
CL-PASTE-COL-SK	Soil	Chloride (CI) (Saturated Paste)	CSSS(1993) 18.2.2/APHA 4500-CL E				
Chloride in a saturated soil	extract is de	etermined colorimetrically by auto-analyzer.					
SAL-MG/KG-CALC-SK	Soil	Detail Salinity in mg/kg	Manual Calculation				
SALINITY-INTCHECK-SK	Soil		CSSS 18.4-Calculation				
SAR-CALC-SO4-SK	Soil	SAR, Cations and SO4 in saturated soil	APHA 3120B				
Ca, Mg, Na, K and SO4 in	a saturated s	soil extract are determined by ICP-OES.					
SAT/PH/EC-SK	Soil	pH and EC (Saturated Paste)	CSSS 18.2.2/CSSC 3.14/CSSS 18.3.1				
The state of the s	pH of a saturated soil paste is measured using a pH meter. After equilibration, an extract is obtained by vacuum filtration with conductivity of the extract measured by a conductivity meter.						
SO4-WATER-SOL-SK	Soil	Water Soluble Sulfate (6 hour 1:10)	CSA A23.2-3B (CONCRETE)				
TGR2-CALC-SK	Soil	Theoretical Gypsum Requirement	J. Ashworth et al (1999)				

Theoretical Gypsum Requirement is an estimate of the gypsum amendment required to remediate brine-contaminated or sodic soils, and is provided in units of tonnes per hectare (t/ha) for a treatment depth of 15cm. TGR(brine), intended for brine-contaminated soils, is calculated using Method A from "A Comparison of Methods for Gypsum Requirement of Brine-Contaminated Soils", by J. Ashworth (Cdn J. of Soil Science, 1999), available at www.alsglobal.com. TGR(sodic), intended for naturally sodic soils, uses the Oster and Frenkel method (Method B) from the same paper. Reported TGR values are capped at 50 t/ha, considered the maximum practical gypsum amendment. To convert TGR from t/ha to tons/acre, multiply by 0.446. To determine a TGR value for an alternate treatment depth, multiply by [desired treatment depth (cm) / 15 cm].

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

^{**} ALS test methods may incorporate modifications from specified reference methods to improve performance.

Quality Control Report

Workorder: L1700580 Report Date: 18-NOV-15 Page 1 of 2

Client: Golder Associates Ltd.

1721 8th Street East

Saskatoon SK S7H 0T4

Contact: Crystal Rinas

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CL-PASTE-COL-SK	Soil							
Batch R3312896 WG2213019-3 IRM Chloride (CI)		SAL814	104.1		%		70-130	17-NOV-15
WG2213019-2 MB Chloride (Cl)			<5.0		mg/L		5	17-NOV-15
SAR-CALC-SO4-SK	Soil							
Batch R3312609 WG2213019-3 IRM Calcium (Ca)		SAL814	110.4		%		70-130	17 NOV 15
Potassium (K)			110.4		%		70-130 70-130	17-NOV-15 17-NOV-15
Magnesium (Mg)			118.8		%		70-130	17-NOV-15
Sodium (Na)			106.6		%		70-130	17-NOV-15
Sulfur (as SO4)			113.6		%		70-130	17-NOV-15
WG2213019-2 MB Calcium (Ca)			<5.0		mg/L		5	17-NOV-15
Potassium (K)			<5.0		mg/L		5	17-NOV-15
Magnesium (Mg)			<5.0		mg/L		5	17-NOV-15
Sodium (Na)			<5.0		mg/L		5	17-NOV-15
Sulfur (as SO4)			<5.0		mg/L		5	17-NOV-15
SAT/PH/EC-SK	Soil							
Batch R3312590								
WG2213019-3 IRM % Saturation		SAL814	44.1		%		37.5-47.5	17-NOV-15
pH in Saturated Paste			7.73		рН		7.4-8	17-NOV-15
Conductivity Sat. Paste			112.7		%		80-120	17-NOV-15
WG2213019-2 MB Conductivity Sat. Paste			<0.10		dS m-1		0.1	17-NOV-15
SO4-WATER-SOL-SK	Soil							
Batch R3313242 WG2213008-1 DUP Water Soluble Sulfate		L1700580-4 0.130	0.121		%	6.8	30	18-NOV-15
WG2213008-3 IRM Water Soluble Sulfate		NA2SO4 SOII			%	0.0	70-130	18-NOV-15
WG2213008-2 MB Water Soluble Sulfate			<0.010		%		0.01	18-NOV-15

Quality Control Report

Workorder: L1700580 Report Date: 18-NOV-15 Page 2 of 2

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard

Sample Parameter Qualifier Definitions:

LCSD Laboratory Control Sample Duplicate

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS Laborato

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#		
------	--	--

Environmental Divisio

ı		ı	II			L	Ц	Ц		l	L		Н	ı	ļ
1	. 2	1	7	nή	75	2	ķľ	١.	r	١,	~	_	$\overline{}$		

Page	1 of	1
outine analysis subject	to availabili	ty)

Phone: 306-665-7989 Fax: 306-665-3342	
Address: 1721 8th St E Email 1: Crystal Rinas@golder.com ○ Emergency (1 Business of Emergency (1 Business of Email 2: ○ For Emergency (1 Description) Phone: 306-665-7989 Fax: 306-665-3342 Invoice To Same as Report? ✓ Yes ○ No ○ Client / Project Information ○ Please indicate belowed by the project of the projec	ss Day) - 100% Surcharge ay, ASAP or Weekend - Contact ALS Analysis Request
Saskatoon SK S7H 0T4 Email 2:	ay, ASAP or Weekend - Contact ALS Analysis Request
Phone: 306-665-7989 Fax: 306-665-3342 Invoice To Same as Report? ✓ Yes No Client / Project Information Please indicate belowed by the project information Company: Job #: 1537312 1537312 1537312	Analysis Request
Invoice To Same as Report? Yes No Client / Project Information Please indicate belo Company: Job #: 1537312 PO / AFF:	
Company: Job #: 1537312 PO / AFF:	ow Filtered, Preserved or both (F, P, F/P)
Contact: PO / AFF	
Contact: PO / AFE: State of the	
Address: LSD: \$\frac{4p}{2}\$	
] · ·	
Phone: Fax: Quote #:	
Contact: Sample Sample Identification ALS Contact: Sampler: Time	
Sample Sample Identification Date Time (This description will appear on the report) Sample Type	Number of Containers
TILL TILLES COS DA COS DAG	1
THE THAT DOC SA 200 040	
BH: TH-15-006 SA: 006-010 Soil x	1
BH: TH-15-009 SA: 009-014 Soil x	
BH: TH-15-011 SA: 011-005 Soil x	1
BH: TH-15-012 SA: 012-008 Soil X	1
Special Instructions / Regulations / Hazardous Details	
Golder requests report "STANDARDQC_ALS" and custom digital report "GOLDER_SK".	
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.	
By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate	e Excel tab.
Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time SHIPMENT RELEASE (client use) SHIPMENT RECEPTION (lab use only) SHIPME	
	NT VERIFICATION (lab use only) Date: Time: Observations:
11/10 1:30 17 °C	Yes / No ?

Golder Associates Ltd. ATTN: Crystal Rinas 1721 8th Street East Saskatoon SK S7H 0T4 Date Received: 27- NOV- 15

Report Date: 28- NOV- 15 13:58 (MT)

Version: FINAL

Client Phone: 306-665-7989

Certificate of Analysis

Lab Work Order #: L1707563
Project P.O. #: NOT SUBMITTED

Job Reference: 1537312

C of C Numbers: Legal Site Desc:

Brian Morgan, B.Sc. Hons. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: #819- 58th St E., Saskatoon, SK S7K 6X5 Canada | Phone: +1 306 668 8370 | Fax: +1 306 668 8383 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1707563 CONTD.... PAGE 2 of 3 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1 1707562 1 TU15 044 0044 00							
L1707563-1 TH15-014 SA014-08 Sampled By: CLIENT							
· · · · · · · · · · · · · · · · · · ·							
Matrix: SOIL Miscellaneous Parameters							
Water Soluble Sulfate	0.440		0.040	%	20 NOV 15	20 NOV 15	D2220057
Detailed Salinity	0.113		0.010	70	28-NOV-15	28-NOV-15	R3320957
Chloride (CI) (Saturated Paste)							
Chloride (CI)	221	DLDS	10	mg/L	27-NOV-15	27-NOV-15	R3320728
Detail Salinity in mg/kg							. 18828 . 28
Chloride (CI)	398	DLDS	18	mg/kg		27-NOV-15	
Calcium (Ca)	301	DLDS	18	mg/kg		27-NOV-15	
Magnesium (Mg)	194	DLDS	18	mg/kg		27-NOV-15	
Potassium (K)	<18	DLDS	18	mg/kg		27-NOV-15	
Sodium (Na)	347	DLDS	18	mg/kg		27-NOV-15	
Sulfur (as SO4)	1620	DLDS	18	mg/kg		27-NOV-15	
SAR, Cations and SO4 in saturated soil		DIDO	gran .		07 NOV. 1-	07.11637.7=	
Calcium (Ca)	167	DLDS	10	mg/L	27-NOV-15	27-NOV-15	R3320751
Potassium (K)	<10	DLDS	10	mg/L	27-NOV-15	27-NOV-15	R3320751
Magnesium (Mg)	108	DLDS	10	mg/L	27-NOV-15	27-NOV-15	R3320751
Sodium (Na) SAR	193 2.86	DLDS	10 0.10	mg/L SAR	27-NOV-15 27-NOV-15	27-NOV-15 27-NOV-15	R3320751 R3320751
Sulfur (as SO4)	898	DLDS	10	mg/L	27-NOV-15	27-NOV-15	R3320751
Theoretical Gypsum Requirement	090	DEBO	10	mg/L	27-1000-10	27-1407-15	13320731
TGR(brine)	<0.10		0.10	t/ha		27-NOV-15	
TGR(sodic)	<0.10		0.10	t/ha		27-NOV-15	
pH and EC (Saturated Paste)							
% Saturation	180		1.0	%	27-NOV-15	27-NOV-15	R3320632
pH in Saturated Paste	7.61		0.10	рН	27-NOV-15	27-NOV-15	R3320632
Conductivity Sat. Paste	2.22		0.10	dS m-1	27-NOV-15	27-NOV-15	R3320632
				1			

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1707563 CONTD....

PAGE 3 of 3 Version: FINAL

J. Ashworth et al (1999)

Reference Information

Sample Parameter Qualifier Key:

Qualifier Description **DLDS** Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

Test Method References:

TGR2-CALC-SK

root mothod recipion	0.						
ALS Test Code	Matrix	Test Description	Method Reference**				
CL-PASTE-COL-SK	Soil	Chloride (CI) (Saturated Paste)	CSSS(1993) 18.2.2/APHA 4500-CL E				
Chloride in a saturated soil	extract is de	etermined colorimetrically by auto-analyzer.					
SAL-MG/KG-CALC-SK	Soil	Detail Salinity in mg/kg	Manual Calculation				
SALINITY-INTCHECK-SK	Soil		CSSS 18.4-Calculation				
SAR-CALC-SO4-SK	Soil	SAR, Cations and SO4 in saturated soil	APHA 3120B				
Ca, Mg, Na, K and SO4 in	a saturated s	soil extract are determined by ICP-OES.					
SAT/PH/EC-SK	Soil	pH and EC (Saturated Paste)	CSSS 18.2.2/CSSC 3.14/CSSS 18.3.1				
pH of a saturated soil paste is measured using a pH meter. After equilibration, an extract is obtained by vacuum filtration with conductivity of the extract measured by a conductivity meter.							
SO4-WATER-SOL-SK	Soil	Water Soluble Sulfate (6 hour 1:10)	CSA A23.2-3B (CONCRETE)				

Theoretical Gypsum Requirement is an estimate of the gypsum amendment required to remediate brine-contaminated or sodic soils, and is provided in units of tonnes per hectare (t/ha) for a treatment depth of 15cm. TGR(brine), intended for brine-contaminated soils, is calculated using Method A from "A Comparison of Methods for Gypsum Requirement of Brine-Contaminated Soils", by J. Ashworth (Cdn J. of Soil Science, 1999), available at www.alsglobal.com. TGR(sodic), intended for naturally sodic soils, uses the Oster and Frenkel method (Method B) from the same paper. Reported TGR values are capped at 50 t/ha, considered the maximum practical gypsum amendment. To convert TGR from t/ha to tons/acre, multiply by 0.446. To determine a TGR value for an alternate treatment depth, multiply by [desired treatment depth (cm) / 15 cm].

Theoretical Gypsum Requirement

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

Soil

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

^{**} ALS test methods may incorporate modifications from specified reference methods to improve performance.

Quality Control Report

Workorder: L1707563 Report Date: 28-NOV-15 Page 1 of 2

Client: Golder Associates Ltd.

1721 8th Street East

Saskatoon SK S7H 0T4

Contact: Crystal Rinas

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CL-PASTE-COL-SK	Soil							
Batch R3320728 WG2222331-2 IRM Chloride (CI)		SAL814	115.3		%		70-130	27-NOV-15
WG2222331-1 MB Chloride (CI)			<5.0		mg/L		5	27-NOV-15
SAR-CALC-SO4-SK	Soil							
Batch R3320751								
WG2222331-2 IRM Calcium (Ca)		SAL814	103.9		%		70-130	27-NOV-15
Potassium (K)			99.5		%		70-130	27-NOV-15
Magnesium (Mg)			112.0		%		70-130	27-NOV-15
Sodium (Na)			100.2		%		70-130	27-NOV-15
Sulfur (as SO4)			110.1		%		70-130	27-NOV-15
WG2222331-1 MB Calcium (Ca)			<5.0		mg/L		5	27-NOV-15
Potassium (K)			<5.0		mg/L		5	27-NOV-15
Magnesium (Mg)			<5.0		mg/L		5	27-NOV-15
Sodium (Na)			<5.0		mg/L		5	27-NOV-15
Sulfur (as SO4)			<5.0		mg/L		5	27-NOV-15
SAT/PH/EC-SK	Soil							
Batch R3320632								
WG2222331-2 IRM		SAL814	40.0		%			
% Saturation			43.0 7.66				37.5-47.5	27-NOV-15
pH in Saturated Paste Conductivity Sat. Paste			105.8		pH %		7.4-8	27-NOV-15
			105.6		/0		80-120	27-NOV-15
WG2222331-1 MB Conductivity Sat. Paste			<0.10		dS m-1		0.1	27-NOV-15
SO4-WATER-SOL-SK	Soil							
Batch R3320957								
WG2222335-1 DUP Water Soluble Sulfate		L1707563-1 0.113	0.133		%	16	30	28-NOV-15
WG2222335-3 IRM Water Soluble Sulfate		NA2SO4 SOIL	106.3		%		70-130	28-NOV-15
WG2222335-2 MB Water Soluble Sulfate			<0.010		%		0.01	28-NOV-15

Quality Control Report

Workorder: L1707563 Report Date: 28-NOV-15 Page 2 of 2

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard

Sample Parameter Qualifier Definitions:

LCSD Laboratory Control Sample Duplicate

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

L1707563-COFC

OC Number:	14 -	4	L8	34	ļĵ

Page ____ of ____

www.alsglobal.com

Report To Report Format L Distribution Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests) PDF EXCEL EDD (DIGITAL) Select Report Format: Regular (Standard TAT if received by 3pm) Company: Contact: Quality Control (QC) Report with Report Priority (2-4 business days if received by 3pm) Address: 1721 8th st Е Emergency (1-2 business days if received by 3pm) Criteria on Report - provide details below if box checked Select Distribution: EMAIL MAIL E2 Same day or weekend emergency If received by 10am - contact ALS for surcharge. Phone: Specify Date Required for E2,E or P: Email 1 or Fax 306 665 - 7989 Email 2 Analysis Request Invoice Distribution indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below Invoice To Same as Report To Copy of Invoice with Report Г Yes Г.No Select Invoice Distribution: **EMAIL** Email 1 or Fax Company: Z Contact: Email 2 ard Number of Containers Oil and Gas Required Fields (client use) Project Information Cost Center: ALS Quote #: Approver ID: GL Account: Routing Code: Chemistry PO / AFE: Activity Code: SD: Location: ALS Contact: ALS Lab Work Order # (lab use only) Sampler: Sample Identification and/or Coordinates Date Time 201 ALS Sample # Sample Type (lab use only) (This description will appear on the report) (dd-mmm-yy) (hh:mm) TH15-014 SA CHE DIA - NA 501 SAMPLE CONDITION AS RECEIVED (lab use only) Special Instructions / Specify Criteria to add on report (client Use) Drinking Water (DW) Samples1 (client use) Frozen SIF Observations No Are samples taken from a Regulated DW System? Custody seal intact Ice packs Yes Yes T Yes T No Cooling Initiated FINAL COOLER TEMPERATURES C Are samples for human drinking water use? INITIAL COOLER TEMPERATURES °C ☐ Yes INITIAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) SHIPMENT RELEASE (client use) Released by: Dates Jime: Received by: Received by: Time: REPER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY NA FM 03004 405 Fig. 103 Dareber 2011

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy

David Krahn 1537312
Dillon Consulting Ltd. December 16, 2015

APPENDIX D

Shelby Tube Sample Photographs

Photo 1: BH 15-01, SA 001-04

Photo 2: BH 15-01, SA 001-07

Photo 3: BH 15-01, SA 001-12

Photo 4: BH 15-01, SA 001-15

Photo 5: BH 15-02, SA 002-06

Photo 6: BH 15-02, SA 002-15

Photo 7: BH 15-04, SA 004-05

Photo 8: BH 15-04, SA 004-08

Photo 9: BH 15-04, SA 004-11

Photo 10: BH 15-04, SA 004-13

Photo 11: BH 15-05, SA 005-04

Photo 12: BH 15-05, SA 005-08

Photo 13: BH 15-05, SA 005-12

Photo 14: BH 15-05, SA 005-16

Photo 15: BH 15-06, SA 006-04

Photo 16: BH 15-06, SA 006-08

Photo 17: BH 15-06, SA 006-12

Photo 18: BH 15-06, SA 006-16

Photo 19: BH 15-07, SA 007-07

Photo 20: BH 15-07, SA 007-11

Photo 21: BH 15-07, SA 007-15

Photo 22: BH 15-07, SA 007-19

Photo 23: BH 15-08, SA 008-06

Photo 24: BH 15-08, SA 008-10

Photo 25: BH 15-08, SA 008-14

Photo 26: BH 15-08, SA 008-18

Photo 27: BH 15-09, SA 009-13

Photo 28: BH 15-09, SA 009-17

Photo 29: BH 15-09, SA 009-9

Photo 30: BH 15-10, SA 010-04

Photo 31: BH 15-10, SA 010-08

Photo 32: BH 15-10, SA 010-12

Photo 33: BH 15-10, SA 010-16

Photo 34: BH 15-11, SA 011-05

Photo 35: BH 15-11, SA 011-09

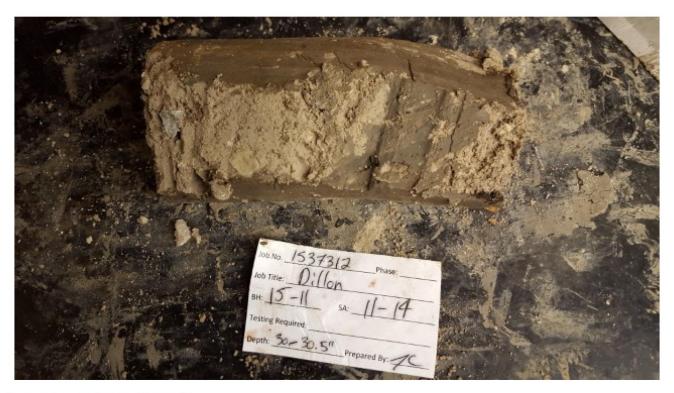


Photo 36: BH 15-11, SA 011-14

Photo 37: BH 15-12, SA 012-07

Photo 38: BH 15-12, SA 012-09

Photo 39: BH 15-12, SA 012-11

Photo 40: BH 15-12, SA 012-13

Photo 41: BH 15-13, SA 013-05

Photo 42: BH 15-13, SA 013-07

Photo 43: BH 15-13, SA 013-09

Photo 44: BH 15-14, SA 014-01

Photo 45: BH 15-14, SA 014-06

Photo 46: BH 15-14, SA 014-11

APPENDIX DShelby Tube Sample Photographs

Photo 47: BH 15-14, SA 014-15

David Krahn 1537312
Dillon Consulting Ltd. December 16, 2015

APPENDIX E

Vibrating Wire Calibration Sheets

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

Customer:

Golder Associates Ltd.-Saskatoon

Model:

VW2100-0.35

Serial Number:

VW34543

Mfg Number:

1530819

Range:

350.0 kPa

Temperature:

22.6 °C

Barometric Pressure:

1005.4 millibars

Work Order Number:

208286

Cable Length:

20 meters

Cable Markings: Cable Colour Code:

1066823 m - 1066842 m Red / Black (Coil)

Green / White (Thermistor)

Cable Type:

EL380004

Thermistor Type:

3 кΩ

Applied Pressure (kPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (kPa)	Linearity Error (% FS)	Polynomia Error (% FS)
0.0	8936	8937	8937	0.4	0.10	-0.05
70.0	8267	8268	8268	70.3	0.07	0.11
140.0	7605	7605	7605	139.5	-0.15	-0.02
210.0	6935	6936	6936	209.4	-0.16	-0.03
280.0	6262	6262	6262	279.8	-0.06	-0.02
350.0	5584	5584	5584	350.6	0.18	0.03
300.0	1 0001		Max. I	Frror (%):	0.18	0.11

Linear Calibration Factor:

C.F.=

0.10448 kPa/B unit

Regression Zero:

At Calibration =

8940.0 B unit

Temperature Correction Factor:

-0.03256 kPa/°C rise

Polynomial Gage Factors (kPa)

-3.6951E-07

B: -0.099118

C: 915.08

Pressure is calculated with the following equations:

 $P(kPa) = C_*F.(Li-Lc) - [Tk(Ti-Tc)] + [0.10(Bi-Bc)]$

Polynomial:

 $P(kPa) = A(Lc)^2 + BLc + C + Tk(Tc-Ti) - [0.10(Bc-Bi)]$

Date

VW Readout

Temp °C

Baro

(dd/mm/yy)

Pos. B (Li)

(Ti)

(Bi)

Shipped Zero Readings:

6-Oct-15

8928

21.8

1016.4

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

B units = $Hz^2 / 1000$

ie: 1700Hz = 2890 B units

Technician: B. Yu

6-Oct-15

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

Document Number.: ELL0130K

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

Customer:

Golder Associates Ltd.-Saskatoon

Model:

VW2100-0.35

Serial Number:

VW34544

Mfg Number:

1530898

Range:

350.0 kPa

Temperature: Barometric Pressure: 22.7 °C 1005.3 millibars

Work Order Number:

208286

Cable Length:

20 meters

Cable Markings: Cable Colour Code:

Red / Black (Coil)

1017852 m - 1017870 m Green / White (Thermistor)

Reu / Dia

EL380004

Cable Type: Thermistor Type:

3 kΩ

Applied Pressure (kPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (kPa)	Linearity Error (% FS)	Polynomial Error (% FS)
0.0	8701	8702	8702	0.4	0.10	-0.01
70.0	8120	8120	8120	70.0	-0.01	0.01
140.0	7537	7537	7537	139.8	-0.07	0.02
210.0	6953	6954	6954	209.6	-0.11	-0.02
280.0	6367	6367	6367	279.8	-0,05	-0.02
350.0	5777	5777	5777	350.5	0.13	0.02
350.0	3711	07.1.		Error (%):	0.13	0.02

Linear Calibration Factor:

C.F.=

0.11972 kPa/B unit

Regression Zero:

At Callbration =

8704.5 B unit

Temperature Correction Factor:

Tk =

-0.03725 kPa/°C rise

Polynomial Gage Factors (kPa)

A: -3.5330E-07

B: -0.11460

C: 1023.9

Pressure is calculated with the following equations:

Linear:

P(kPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.10(Bi-Bc)]

Polynomial:

 $P(kPa) = A(Lc)^2 + BLc + C + Tk(Tc-Ti) - [0.10(Bc-Bi)]$

Date

VW Readout

Temp °C

Baro

(dd/mm/yy)

Pos. B (Li)

(Ti)

(Bi)

Shipped Zero Readings:

6-Oct-15

8694

21.9

1016.4

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

B units = $Hz^2 / 1000$ ie: 1700Hz = 2890 B units

Technician: B. Yu

,

Date: 6-Oct-15

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

Customer:

Golder Associates Ltd.-Saskatoon

Model:

VW2100-0.35

Serial Number:

VW34545

Mfg Number:

1530899

Range: Temperature: 350.0 kPa 22.7 °C

Barometric Pressure:

1005.3 millibars

Work Order Number:

208286

Cable Length: Cable Markings:

20 meters 1017952 m - 1017971 m

Cable Colour Code:

Red / Black (Coil)

Green / White (Thermistor)

EL380004

Cable Type: Thermistor Type:

 $3\ k\Omega$

Applied Pressure (kPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (kPa)	Linearity Error (% FS)	Polynomia Error (% FS)
0.0	8793	8793	8793	0.1	0.03	-0.01
70.0	8153	8153	8153	70.0	0.01	0.02
140.0	7513	7513	7513	139.9	-0.02	0.02
210.0	6873	6873	6873	209.8	-0.04	-0.01
280.0	6232	6232	6232	279.9	-0.04	-0.03
350.0	5588	5588	5588	350.2	0.06	0.02
			Max. E	Fror (%):	0.06	0.03

Linear Calibration Factor:

C.F.=

0.10924 kPa/B unit

Regression Zero:

At Calibration =

8794.0 B unit

Temperature Correction Factor:

Tk =

-0.08707 kPa/°C rise

Polynomial Gage Factors (kPa)

-1.1404E-07

B: -0.10760

C: 954.88

Pressure is calculated with the following equations:

Linear:

P(kPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.10(Bi-Bc)]

Polynomial:

 $P(kPa) = A(Lc)^2 + BLc + C + Tk(Tc-Ti) - [0.10(Bc-Bi)]$

Date

Temp °C VW Readout

(dd/mm/yy)

Pos. B (Li)

(Ti)

Baro (Bi)

Shipped Zero Readings:

6-Oct-15

8785

21.8

1016.4

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

B units = $Hz^2 / 1000$

Technician: B. Yu

ie: 1700Hz = 2890 B units

6-Oct-15

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

Customer: Model:

Golder Associates Ltd.-Saskatoon

VW2100-0.35

Serial Number:

VW34546

Mfg Number:

1530900

Range:

350.0 kPa

Temperature:

22.7 °C

Barometric Pressure: Work Order Number:

1005.3 millibars

Cable Length:

208286

Cable Markings:

20 meters 1017811 m - 1017830 m

Cable Colour Code:

Red / Black (Coil)

Green / White (Thermistor)

EL380004

Cable Type: **Thermistor Type:**

3	MO
J	V77

Applied	First	Second	Average	Calculated	Linearity	Polynomia
Pressure	Reading	Reading	Reading	Linear	Error	Error
(kPa)	(B units)	(Bunits)	(B units)	(kPa)	(% FS)	(% FS)
0.0	8869	8870	8870	0,2	0.05	-0.01
70.0	8219	8220	8220	70.0	-0.01	0.00
140.0	7568	7568	7568	139.9	-0.03	0.02
210.0	6917	6917	6917	209.8	-0.06	-0.01
280.0	6264	6264	6264	279.9	-0.03	-0.01
350.0	5609	5609	5609	350.2	0.07	0.01
	•		Max. E	rror (%):	0.07	0.02

Linear Calibration Factor:

C.F.=

0.10736 kPa/B unit

Regression Zero:

At Calibration =

8871.2 B unit

Temperature Correction Factor:

Tk =

-0.01603 kPa/°C rise

Polynomial Gage Factors (kPa)

-1.3981E-07

B: -0.10534

C: 945.27

Pressure is calculated with the following equations:

Linear

 $P(kPa) = C_*F_*(Li-Lc) - [Tk(Ti-Tc)] + [0.10(Bi-Bc)]$

Polynomial:

 $P(kPa) = A(Lc)^{2} + BLc + C + Tk(Tc-Ti) - [0.10(Bc-Bi)]$

Date

VW Readout

Temp °C

Baro

(dd/mm/yy)

Pos. B (Li)

(Ti)

(Bi)

Shipped Zero Readings:

6-Oct-15

8868

21,9

1016.4

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

ie: 1700Hz = 2890 B units B units = $Hz^2 / 1000$

Technician: B. Yu

6-Oct-15

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

Customer:

Golder Associates Ltd.-Saskatoon

Model:

VW2100-0.35

Serial Number:

VW34547

Mfg Number:

1530901

Range: Temperature: 350.0 kPa 22.7 °C

Barometric Pressure:

1005.3 millibars

Work Order Number:

208286

Cable Length: Cable Markings: 20 meters

Cable Colour Code:

1017831 m - 1017850 m Red / Black (Coil)

Green / White (Thermistor)

EL380004

Cable Type: Thermistor Type:

 $3 k\Omega$

Applied Pressure (kPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (kPa)	Linearity Error (% FS)	Polynomial Error (% FS)
0.0	8906	8906	8906	0.4	0.10	0.02
70.0	8300	8300	8300	69.9	-0.03	-0.01
140.0	7693	7693	7693	139.5	-0.13	-0.06
210.0	7079	7079	7079	210.0	0.00	0.06
280.0	6469	6469	6469	280.0	0.00	0.01
350.0	5857	5857	5857	350.2	0.06	-0.02
			Max. I	Error (%):	0.13	0.06

Linear Calibration Factor:

C.F.=

0.11474 kPa/B unit

Regression Zero:

At Calibration =

8909.1 B unit

Temperature Correction Factor:

Tk =

-0.06677 kPa/°C rise

Polynomial Gage Factors (kPa)

-2.3123E-07

B: -0.11133

C: 1009.9

Pressure is calculated with the following equations:

Linear:

P(kPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.10(Bi-Bc)]

Polynomial:

 $P(kPa) = A(Lc)^2 + BLc + C + Tk(Tc-Ti) - [0.10(Bc-Bi)]$

Date (dd/mm/yy)

Temp °C VW Readout

Baro

Pos. B (Li)

(Ti)

(BI)

Shipped Zero Readings:

6-Oct-15

8906

21.8

1016.4

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

B units = $Hz^2 / 1000$

Technician: B. Yu

ie: 1700Hz = 2890 B units

6-Oct-15

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

Customer:

Golder Associates Ltd.-Saskatoon

Model:

VW2100-0.35

Serial Number:

VW34548

Mfg Number:

1530902

Range:

350.0 kPa

Temperature:

22.7 °C

Barometric Pressure:

1005.3 millibars

Work Order Number:

208286 20 meters

Cable Length: Cable Markings: 1017932 m - 1017951 m

Cable Colour Code:

Red / Black (Coil)

Green / White (Thermistor)

EL380004

Cable Type: Thermistor Type:

3 kΩ

Applied Pressure (kPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (kPa)	Linearity Error (% FS)	Polynomial Error (% FS)
0.0	8733	8733	8733	0.3	0.09	0.00
70.0	8085	8085	8085	69.9	-0.02	0.00
140.0	7435	7435	7435	139.8	-0.06	0.01
210.0	6784	6784	6784	209.7	-0.08	0.00
280.0	6131	6131	6131	279.9	-0.03	-0.01
350.0	5475	5475	5475	350.4	0.10	0.01
350.0	0470	0110		Error (%):	0.10	0.01

Linear Calibration Factor:

C.F.=

0.10744 kPa/B unit

Regression Zero:

At Calibration =

8736.0 B unit

Temperature Correction Factor:

Tk =

-0.08635 kPa/°C rise

Polynomial Gage Factors (kPa)

-2.3505E-07

B: -0.10410

C: 927.03

Pressure is calculated with the following equations:

Linear:

P(kPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.10(Bi-Bc)]

Polynomial:

 $P(kPa) = A(Lc)^2 + BLc + C + Tk(Tc-Ti) - [0.10(Bc-Bi)]$

Date

VW Readout

Temp °C

Baro

(dd/mm/yy)

Pos. B (Li)

(Ti)

(Bi)

Shipped Zero Readings:

6-Oct-15

8727

22.1

1016.4

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

B units = $Hz^2 / 1000$

ie: 1700Hz = 2890 B units

Technician: B. Yu

6-Oct-15

This instrument has been calibrated using standards traceable to the NIST in compliance with ANSI Z540-1

elamino nemia

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

Customer:

Golder Associates Ltd.-Saskatoon

Model:

VW2100-0.35

Serial Number:

VW34549

Mfg Number: Range:

1530903 350.0 kPa

Temperature:

22.7 °C 1005.3 millibars

Barometric Pressure: Work Order Number:

208286

Cable Length:

20 meters

Cable Markings: Cable Colour Code: 1017912 m - 1017931 m

Green / White (Thermistor)

Red / Black (Coil)

EL380004

Cable Type: Thermistor Type:

з кΩ

Applied Pressure (kPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (kPa)	Linearity Error (% FS)	Polynomial Error (% FS)
0.0	8879	8881	8880	0.4	0.12	0.02
70.0	8270	8271	8271	69.9	-0.04	-0.02
140.0	7659	7658	7659	139.6	-0.11	-0.03
210.0	7042	7043	7043	209.8	-0.05	0.03
280.0	6427	6427	6427	280.0	-0.01	0.01
350.0	5810	5810	5810	350.3	0.08	-0.01
330,0	0010		Max.	Error (%):	0.12	0.03

Linear Calibration Factor:

C.F.=

0.11397 kPa/B unit

Regression Zero:

At Calibration =

8883.5 B unit

Temperature Correction Factor:

Tk =

-0.06306 kPa/°C rise

Polynomial Gage Factors (kPa)

-2.7785E-07

B: -0.10989

C: 997.79

Pressure is calculated with the following equations:

Linear:

 $P(kPa) = C_*F_*(Li-Lc) - [Tk(Ti-Tc)] + [0.10(Bi-Bc)]$

Polynomial:

 $P(kPa) = A(Lc)^2 + BLc + C + Tk(Tc-Ti) - [0.10(Bc-Bi)]$

Date

VW Readout

Temp °C

Baro

(dd/mm/yy)

Pos. B (Li)

(Ti)

(Bi)

Shipped Zero Readings:

6-Oct-15

8872

21.8

1016.4

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

B units = $Hz^2 / 1000$

ie: 1700Hz = 2890 B units

Technician: B. Yu

6-Oct-15 Date:

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

Customer:

Golder Associates Ltd.-Saskatoon

Model:

VW2100-0.35

Serial Number:

VW34550

Mfg Number:

1530904

Range:

1530904 350.0 kPa

Temperature:

22.7 °C

Barometric Pressure:

1005.3 millibars

Work Order Number: Cable Length: 208286 20 meters

Cable Markings:

1017972 m - 1017991 m

Cable Colour Code:

(O = :I)

Green / White (Thermistor)

Red / Black (Coil)

EL380004

Cable Type: Thermistor Type:

3	kΩ
_	,,,,,

Applied Pressure (kPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (kPa)	Linearity Error (% FS)	Polynomial Error (% FS)
0.0	8695	8694	8695	0.3	0.08	-0.01
70.0	8045	8045	8045	70.0	-0.01	0.01
140.0	7394	7395	7395	139.8	-0.06	0.00
210.0	6742	6743	6743	209.8	-0.07	0.00
280.0	6089	6089	6089	279.9	-0.03	-0.01
350.0	5433	5433	5433	350.3	0,09	0.01
	Max. Error (%):					0.01

Linear Calibration Factor:

C.F.=

0.10733 kPa/B unit

Regression Zero:

At Calibration =

8697.0 B unit

Temperature Correction Factor:

TI- -

-0.07024 kPa/°C rise

Polynomial Gage Factors (kPa)

A: -2.0049E-07

B: -0.10449

C: 923.66

Pressure is calculated with the following equations:

Linear

P(kPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.10(Bi-Bc)]

Polynomial:

 $P(kPa) = A(Lc)^2 + BLc + C + Tk(Tc-Ti) - [0.10(Bc-Bi)]$

Date (dd/mm/yy)

VW Readout Pos. B (Li) Temp °C (Ti) Baro (Bi)

Shipped Zero Readings:

6-Oct-15

8689

21.9

1016.4

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

B units = $Hz^2 / 1000$ ie: 1700Hz = 2890 B units

Technician: B. Yu

1

Date: 6-Oct-15

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

Customer:

Golder Associates Ltd.-Saskatoon

Model:

VW2100-0.35

Serial Number:

VW34551

Mfg Number:

1530905

Range: Temperature: 350.0 kPa 22.7 °C

Barometric Pressure:

1005.3 millibars

Work Order Number: Cable Length:

208286 20 meters

Cable Markings:

1017791 m - 1017810 m

Cable Colour Code:

Red / Black (Coil)

Green / White (Thermistor)

EL380004

Cable Type: Thermistor Type:

з кΩ

Applied Pressure (kPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (kPa)	Linearity Error (% FS)	Polynomial Error (% FS)
0.0	8794	8794	8794	0.3	0.08	0.00
70.0	8170	8170	8170	69.9	-0.02	0.00
140.0	7544	7545	7545	139.8	-0.07	0.00
210.0	6917	6917	6917	209.8	-0.06	0.01
280.0	6289	6289	6289	279.9	-0,03	-0.01
350.0	5658	5658	5658	350.3	0,09	0.01
			Max. I	Error (%):	0.09	0.01

Linear Calibration Factor:

C.F.=

0.11161 kPa/B unit

Regression Zero:

At Calibration =

8796.6 B unit

Temperature Correction Factor:

Tk =

-0.07486 kPa/°C rise

Polynomial Gage Factors (kPa)

Δ.

-2.2804E-07

B: -0.10832

C: 970.19

Pressure is calculated with the following equations:

Linear:

P(kPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.10(Bi-Bc)]

Polynomial:

 $P(kPa) = A(Lc)^2 + BLc + C + Tk(Tc-Ti) - [0.10(Bc-Bi)]$

Date

VW Readout

Temp °C

(dd/mm/yy)

Pos. B (Li)

(Ti)

Baro (Bi)

Shipped Zero Readings:

6-Oct-15

8788

21.1

1016.4

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

B units = $Hz^2 / 1000$

ie: 1700Hz = 2890 B units

Technician: B. Yu

Date: 6-Oct-15

RST Instruments Ltd., 11545 Kingston St., Maple Ridge, British Columbia, Canada V2X 0Z5 Tel: 604 540 1100 • Fax: 604 540 1005 • Toll Free: 1 800 665 5599 (North America only) e-mail: info@rstinstruments.com • Website: www.rstinstruments.com

Vibrating Wire Piezometer

Customer:

Golder Associates Ltd.-Saskatoon

Model:

VW2100-0.35

Serial Number:

VW34552

Mfg Number:

1530906

Range:

350.0 kPa

Temperature:

22.7 °C

Barometric Pressure:

1005.3 millibars

Work Order Number:

208286

Cable Length: Cable Markings:

20 meters 1017892 m - 1017910 m

Cable Colour Code:

Red / Black (Coil)

Green / White (Thermistor) EL380004

Cable Type: Thermistor Type:

3	kΩ

Applied Pressure (kPa)	First Reading (B units)	Second Reading (B units)	Average Reading (B units)	Calculated Linear (kPa)	Linearity Error (% FS)	Polynomial Error (% FS)
0.0	8795	8796	8796	0.4	0.10	0.02
70.0	8209	8208	8209	69.8	-0.07	-0.05
140.0	7615	7616	7616	139.9	-0.04	0.03
210.0	7024	7024	7024	209.8	-0.06	0.01
280.0	6430	6431	6431	280.0	-0.01	0.01
350.0	5836	5836	5836	350.2	0.07	-0.01
Max. Error (%):					0.10	0.05

Linear Calibration Factor:

C.F.=

0.11823 kPa/B unit

Regression Zero:

At Calibration =

8798.5 B unit

Temperature Correction Factor:

Tk =

-0.02815 kPa/°C rise

Polynomial Gage Factors (kPa)

-2.3772E-07

B: -0.11475

C: 1027.7

Pressure is calculated with the following equations:

Linear:

P(kPa) = C.F.(Li-Lc) - [Tk(Ti-Tc)] + [0.10(Bi-Bc)]

Polynomial:

 $P(kPa) = A(Lc)^2 + BLc + C + Tk(Tc-Ti) - [0.10(Bc-Bi)]$

Date

Temp °C VW Readout

Baro

(dd/mm/yy)

Pos. B (Li)

(Ti)

(Bi)

Shipped Zero Readings:

6-Oct-15

8794

21.8

1016.4

Li, Lc = initial (at installation) and current readings

Ti, Tc = initial (at installation) and current temperature, in °C

Bi, Bc = initial (at installation) and current barometric pressure readings, in millibars

B units = B scale output of VW 2102, VW 2104, VW 2106 and DT 2011 readouts

B units = $Hz^2 / 1000$

ie: 1700Hz = 2890 B units

Technician: B. Yu

Date: 6-Oct-15

SCHEDULE "B"

CONSULTANT'S STATEMENT OF LIMITATIONS

The scope and the period of Golder's investigations and services are as described in the Report, and are subject to restrictions and limitations. The Report has been based on instructions given to Golder by Client and communications between Golder and Client. Such instructions and communications have directed the extent and detail of explorations and testing, including the number, type, and geographic position of tests and their locations. Proposed Relying Party should review the level of investigation and reporting provided and make its own assessment and interpretation on the sufficiency of the Report and conduct any additional investigations or supplement as they deem appropriate.

Golder has prepared the Report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing in Manitoba subject to the time limits and financial, physical or any other constraints applicable to the services. No warranty, expressed or implied is made. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Report. Conditions may therefore exist which were undetectable given the limited nature of the inquiry Golder was retained to undertake with respect to the site. If a service is not expressly indicated, do not assume it has been provided. The Report is intended to be used in its entirety and no excerpts may be taken to be representative of the findings in the assessments.

The information provided in the Report applies only to the subject site as it existed at the time of Golder's site investigations. Should the site use or conditions change, the information in the Report may no longer apply. It is recognized that the passage of time affects the information provided in such Report. Not all sites may have been investigated due to various constraints (such as lack of permission to enter, limited access to site due to terrain, crops or dense vegetation cover). As such the subsurface models may not have had an inadequate number of data points and accordingly, should not be relied upon. Any interpretation of the data is at the sole risk of the interpreter and such interpretation must consider the variable nature of subsurface materials, the uncertainty associated with the exploration and testing methods, and the effects that these will have on design and construction. Golder assumes no responsibility and no liability for any interpretations of the data contained in the Report or the consequences thereof, including, but not limited to, proposed designs, the feasibility of development, construction techniques, cost, schedule, safety, and equipment capabilities. Golder makes no representations regarding the marketability of the subject property and none should be inferred based on the Report.

Classification and identification of geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment. Boundaries between different soil, rock, or geologic types or units are typically transitional rather than abrupt. Golder does not warrant or guarantee the exactness of the subsurface material descriptions or the boundary between different materials that is interpreted between sample locations. Soil and groundwater conditions shown in the Report are the observed conditions at the time and location of their determination or measurement. Soil and groundwater conditions

may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. Fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The Report includes only the geotechnical aspects of the subsurface conditions and no chemical information related to the native soil deposits and/or fill materials. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for the Report and have not been investigated or addressed in the Report. The condition of the soil, rock, and groundwater may be significantly altered by construction activities on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying, or freezing and the soil may require protection from these changes during construction.

Golder Associates Ltd. (Golder) and the Relying Party (as defined in the attached Reliance Letter Agreement) agree that any reliance upon or use by the Relying Party on the Report(s) shall be governed by the terms and conditions set out in the Report(s) (as defined in the Reliance Letter Agreement), the Reliance Letter Agreement, and the following terms and conditions (collectively, the "Agreement"):

- 1. <u>INFORMATION AND PERMISSIONS</u> Golder may have relied upon reports, data, studies, plans, specifications, documents and other information provided by Client and others in performing the Services, and Golder assumes no responsibility or liability for the accuracy or completeness of such. Unless clearly specified in the Report, Golder was not responsible for obtaining any permits, licenses, consents, authorizations or other permissions to perform the Services.
- 2. OWNERSHIP OF INSTRUMENTS OF SERVICE The Services provided by Golder are intended for the specific purpose for which it was performed and for one time use only. All reports, plans, designs, boring logs, field data, field notes, laboratory test data, calculations, estimates and other documents prepared by Golder are considered its professional work product and shall remain the property of Golder. Any use or reuse unauthorized by Golder will be at Relying Party's sole risk and responsibility, and Golder disclaims all liability with respect thereto. Relying Party will indemnify and hold Golder harmless from any loss or liability resulting from the Relying Party's reuse, misuse, improper or negligent use of Golder's professional work product.
- 3. <u>INDEMNITY</u> Relying Party shall indemnify, defend and hold harmless Golder and its subcontractors, consultants, agents, officers, directors and employees from and against all claims, damages, losses and expenses, including but not limited to legal fees, court and arbitration costs, arising out of or resulting from the acts, errors or omissions of Relying Party, inclusive of claims made by third parties.
- 4. <u>LIMITATION</u> To the fullest extent permitted by law, the Relying Party agrees to limit the liability of Golder, its affiliates, and their respective employees, officers, directors, agents, consultants and subcontractors ("Golder Group") to Relying Party, for any and all causes of action asserted by Relying Party, to matters which arise directly from Golder's acts, errors or omissions, such that the total aggregate liability of Golder to Relying Party shall not exceed Fifty Thousand Dollars (\$50,000). Relying Party hereby waives and releases: (i) all present and future claims against Golder Group other than those described in the preceding sentence, and (ii) any liability of Golder Group in excess of the limitation amount. Any liability of Golder shall expire one year after the date of the Report. Neither party shall be responsible to the other for and each party waives any right to recover from the other for lost revenues, lost profits, cost of capital, claims of customers, or other special, indirect, consequential or punitive damages. In consideration of the promises contained herein and for other separate, valuable consideration, the receipt and sufficiency of which is hereby acknowledged, Relying Party acknowledges and agrees that it has had the opportunity to negotiate the terms of this Section entitled Limitation as part of an "arms-length" transaction.
- 5. <u>DISPUTES</u> In the event that one party makes a claim against the other, at law or otherwise, and then fails to prove such claim, then the prevailing party shall be entitled to all costs, including legal fees incurred in defending against the claim.

